首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  1996年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The DNA-interactive drug, echinomycin, is a potent antitumor agent, which is able to induce apoptosis in a multitude of cancer cell lines. Previously, we showed that echinomycin strongly inhibited the growth of a variety of cancer cell lines, and the activation of mitogen-activated protein kinases (MAPK) in human colon cancer cells (HT-29). However, little information currently exists regarding the details of intracellular signaling pathways such as the MAPK, mitochondrial, and caspase pathways. In order to clarify this issue, we verified the plausible molecular signaling cascade by performing an immunobiochemical apoptosis experiment involving the mitochondrial and caspase pathways. The apoptotic process of HT-29 cells was accompanied by the activation of procaspase-9, -3 and cytochrome c release. Both caspase and MAPK inhibitors were used in the determination of the specific roles of MAPK and caspase in echinomycin-induced apoptosis. ERK (PD98059) or caspase-3-specific (Z-DEVD-FMK) inhibitors were discovered to significantly attenuate echinomycin-induced apoptosis. PD98059 treatment or overexpression of kinase-inactive ERK did not alter the echinomycin-induced cytochrome c release into the cytosol, but did diminish the activation of procaspase-3. Also, Z-DEVD-FMK was found to have no effect on either cytochrome c release or ERK activation. Taken together, these results indicate that cytochrome c release, and the activation of ERK and caspase-3 in the final apoptosis pathway are all relevant factors in echinomycin-induced apoptosis. To our knowledge, this study is the first to delineate the echinomycin's direct detrimental effects on colon cancer cells.  相似文献   
2.
3.
Trichomonas vaginalis, a flagellated protozoan parasite, is the causative organism of trichomoniasis. We have recently demonstrated that T. vaginalis induces apoptotic cell death via a Bcl-x(L)-dependent pathway in RAW264.7 macrophages. In this study, we attempted to characterize in detail the signaling cascades resulting in T. vaginalis-induced macrophage apoptosis, focusing particularly on mitochondrial changes and the role of p38 mitogen-activated protein kinase (p38 MAPK) activation. We found that T. vaginalis induced mitochondrial changes including the release of cytochrome c and the serial activation of caspases, leading to the activation of p38 MAPK in macrophages. These biochemical changes culminated in the apoptosis of the host cells. Caspase inhibitors induced a significant inhibition of T. vaginalis-induced nuclear damage, as well as the activation of p38 MAPK. Treatment with the p38 MAPK inhibitor, SB203580, or the overexpression of kinase-inactive p38 MAPK, induced an attenuation of T. vaginalis-induced apoptosis but not cytochrome c release, the activation of caspase-9 and caspase-3, or PARP cleavage. Furthermore, SB203580 treatment to human macrophages consistently blocked T. vaginalis-induced apoptosis. Collectively, our findings indicate that p38 MAPK signaling cascade is requisite to apoptosis of T. vaginalis-infected macrophage, and this apoptotic process occurs via the phosphorylation of p38 MAPK, which is located downstream of mitochondria-dependent caspase activation, conferring insight into the plausible molecular mechanism of T. vaginalis-immune evasion from macrophage attack.  相似文献   
4.
The present study was to see whether echinomycin-induced apoptosis would be NF-kappaB-dependent and if so, whether echinomycin would activate or inhibit NF-kappaB as well as resultant chemokine IL-8 expression. In HT-29 cells echinomycin activated NF-kappaB in time-dependent manner. EMSA in the presence of antibodies specific for p50 and p65 subunits indicated that echinomycin-induces the translocation of p50-p65 heterodimeric subunits of NF-kappaB. Levels of IkappaB were detected at initial echinomycin treatment and thereafter decreased, faintly seen after a 6h treatment. In contrast p-IkappaB levels were clearly detected throughout 6-24h of echinomycin treatment, albeit initially fainted. To clarify the role of NF-kappaB on IL-8 expression in echinomycin-mediated apoptosis of HT-29 cells, ELISA plus RT-PCR clearly showed that IL-8 production is inducible by echinomycin treatment. Using a specific inhibitor, IL-8 regulation at echinomycin treatment in HT-29 cells occurred via both caspase-3 and NF-kappaB-dependent signal pathway. To confirm whether two different pathways (NF-kappaB and caspase) would be coupled, only NF-kappaB inhibitor (PDTC) and caspase-3 specific inhibitor (Z-DEVD-FMK) together significantly attenuated echinomycin-initiated apoptosis of HT-29 cells, pretreatment of HT-29 cells with PDTC rarely affected echinomycin-induced caspase-3 activation. So echinomycin-induced apoptosis in HT-29 cells occurs via NF-kappaB activation independent of caspase-3 activation modulating the resultant-linked key chemokine IL-8 expression and echinomycin-induced apoptosis is NF-kappaB-dependant and directly related to NF-kappaB activation, consequently regulating IL-8 expression.  相似文献   
5.
6.
Burkholderia sp. is a gram-negative bacterium that commonly exists in the environment, and can cause diseases in plants, animals, and humans. Here, a transposon mutant library of a Burkholderia lata isolate from a pig with swine respiratory disease in Korea was screened for strains showing attenuated virulence in Caenorhabditis elegans. One such mutant was obtained, and the Tn5 insertion junction was mapped to rpfR, a gene encoding a cyclic di-GMP phosphodiesterase that functions as a receptor. Mutation of rpfR caused a reduction in growth on CPG agar and swimming motility as well as a rough colony morphology on Congo red agar. TLC analysis showed reduced AHL secretion, which was in agreement with the results from plate-based and bioluminescence assays. The mutant strain produced significantly more biofilm detected by crystal violet staining than the parent strain. SEM of the mutant strain clearly showed that the overproduced biofilm contained a filamentous structure. These results suggest that the cyclic di-GMP phosphodiesterase RpfR plays an important role in quorum sensing modulation of the bacterial virulence and biofilm formation.  相似文献   
7.
Recognition of oligodeoxynucleotides containing CpG motifs (CpG-ODNs) by toll-like receptor 9 (TLR9) inhibits RANKL-induced osteoclastogenesis from precursors. This inhibitory effect suggests the possibility of using this strategy to block pathological bone loss. However, the enhancing effect of CpG-ODNs on OC formation from RANKL-primed pre-osteoclasts (pOCs) has hampered their clinical use. In this report, we developed a CpG-KSK13 oligonucleotide with an alternative CpG motif, and tested its effect on osteoclastogenesis in comparison with previously used murine CpG motif (CpG-1826) or human CpG motif (CpG-2006) oligonucleotides. Murine CpG-1826 inhibited RANKL-induced OC formation from BMMs but not from RANKL-primed pOCs, while CpG-KSK13 treatment strongly inhibited OC formation from both BMM and primed pOC cells. CpG-KSK13 also showed a potent inhibitory effect on human OC differentiation using peripheral blood mononuclear cells (PBMCs), which was in contrast to the species-specific response of murine CpG-1826 or human CpG-2006. Moreover, CpG-KSK13 effectively inhibited NFATc1 activity, but not NF-κB or AP-1 activity, and decreased TREM-2 promoter activity and subsequent surface expression of the TREM-2 protein induced by M-CSF and RANKL. These results demonstrate that the recognition of CpG-KSK13 via TLR9 inhibits osteoclastogenesis by down-regulating TREM-2 expression. Thus, our findings provide evidence for the potential use of CpG-KSK13 as an anti-osteoclastogenic agent for human and for pre-clinical animals.  相似文献   
8.
Niu  Kai-Min  Kothari  Damini  Lee  Woo-Do  Zhang  Zhihong  Lee  Bong-Joo  Kim  Kang-Woong  Wu  Xin  Han  Hyon-Sob  Khosravi  Sanaz  Lee  Sang-Min  Kim  Soo-Ki 《Probiotics and antimicrobial proteins》2021,13(4):1106-1118

In recent years, considerable and growing attention has been given to the application of host-associated microorganisms as a more suitable source of probiotics in aquaculture sector. Herein, we isolated and screened the olive flounder gut microbiota for beneficial bacterial strains that might serve as potential probiotics in a low fishmeal extruded aquafeed. Among the ten identified isolates, Bacillus amyloliquefaciens SK4079 and B. subtilis SK4082 were screened out based on their heat-resistant ability as well as enzymatic and non-hemolytic activities. Although both strains were well able to utilize carboxymethyl cellulose (CMC), xylan, and soybean meal (SBM) as a single carbon source in the minimal nutrient M9 medium, B. subtilis exhibited significantly higher cellulase, xylanase, and protease activities than B. amyloliquefaciens. The two selected strains were well able to degrade the undesirable anti-nutritional component of the SBM, which would limit its utilization as protein source in aquafeed industry. Significantly higher biofilm formation capacity and notably stronger adhesive interactions with the flounder’s skin mucus were detected in B. subtilis than B. amyloliquefaciens. Immobilization of the spores from the selected strains, in a SBM complex carrier, remarkably enhances their thermal resistance at 120 °C for 5 min and different drying conditions. It was also interesting to learn that the B. subtilis spores could survive and remain viable after being sprayed onto extruded low-fish meal feed pellets for as long as 6 months. Overall, the findings of the present study could help the food/feed industries achieve their goal of developing cost-effective yet efficient products.

  相似文献   
9.
10.
The red yeast Xanthophyllomyces dendrorhous (previously named Phaffia rhodozyma) produces astaxanthin pigment among many carotenoids. The mutant X. dendrorhous G276 was isolated by chemical mutagenesis. The mutant produced about 2.0 mg of carotenoid per g of yeast cell dry weight and 8.0 mg/L of carotenoid after 5 days batch culture with YM media; in comparison, the parent strain produced 0.66 mg/g of yeast cell dry weight and a carotenoid concentration of 4.5 mg/L. We characterized the utilization of carbon sources by the mutant strain and screened various edible plant extracts to enhance the carotenoid production. The addition of Perilla frutescens (final concentration, 5%) or Allium fistulosum extracts (final concentration, 1%) enhanced the pigment production to about 32 mg/L. In a batch fermentor, addition of Perilla frutescens extract reduced the cultivation time by two days compared to control (no extract), which usually required five-day incubation to fully produce astaxanthin. The results suggest that plant extracts such as Perilla frutescens can effectively enhance astaxanthin production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号