首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2006年   3篇
  2002年   1篇
  2001年   1篇
  1991年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Phospholipases A2 (PLA2) are a family of enzymes that catalyze the hydrolysis of the sn-2 ester bond of glycerophospholipids liberating lysophospholipids and free fatty acids; important second messengers involved in atherogenesis. Plasma PAF-acetylhydrolase (PAF-AH) or Lp-PLA2 is a Ca2+-independent PLA2 which is produced by monocyte-derived macrophages and by activated platelets, and circulates in plasma associated with lipoproteins. PAF-AH catalyzes the removal of the acetyl/short acyl group at the sn-2 position of PAF and oxidized phospholipids produced during inflammation and oxidative stress. In humans, PAF-AH is mainly associated with small dense LDL and to a lesser extent with HDL and with lipoprotein(a). PAF-AH is N-glycosylated prior to secretion which diminishes its association with HDL raising the question of its distribution between the proatherogenic LDL vs the antiatherogenic HDL. Hypercholesterolemic patients have higher plasma PAF-AH activity which is reduced upon hypolipidemic therapy. PAF-AH specific inhibitor darapladib stabilizes human and swine plaques, therefore challenging the antiatherogenic potential of PAF-AH shown in small animal models.  相似文献   
2.
Platelet Activating Factor (PAF) is a potent mediator of inflammation whose biological activity depends on the acetyl group esterified at the sn-2 position of the molecule. PAF-acetylhydrolase (PAF-AH), a secreted calcium-independent phospholipase A(2), is known to inactivate PAF by formation of lyso-PAF and acetate. However, PAF-AH deficient patients are not susceptible to the biological effects of inhaled PAF in airway inflammation, suggesting that other enzymes may regulate extracellular levels of PAF. We therefore examined the hydrolytic activity of the recently described human group X secreted phospholipase A(2) (hGX sPLA(2)) towards PAF. Among different sPLA(2)s, hGX sPLA(2) has the highest affinity towards phosphatidylcholine (PC), the major phospholipid of cellular membranes and plasma lipoproteins. Our results show that unlike group IIA, group V, and the pancreatic group IB sPLA(2), recombinant hGX sPLA(2) can efficiently hydrolyze PAF. The hydrolysis of PAF by hGX sPLA(2) rises abruptly when the concentration of PAF passes through its critical micelle concentration suggesting that the enzyme undergoes interfacial binding and activation to PAF. In conclusion, our study shows that hGX sPLA(2) may be a novel player in PAF regulation during inflammatory processes.  相似文献   
3.

Objectives

TNFRSF1A is involved in an autosomal dominant autoinflammatory disorder called TNFR-associated periodic syndrome (TRAPS). Most TNFRSF1A mutations are missense changes and, apart from those affecting conserved cysteines, their deleterious effect remains often questionable. This is especially true for the frequent R92Q mutation, which might not be responsible for TRAPS per se but represents a susceptibility factor to multifactorial inflammatory disorders. This study investigates TRAPS pathophysiology in a family exceptional by its size (13 members) and compares the consequences of several mutations affecting arginine 92.

Methods

TNFRSF1A screening was performed by PCR-sequencing. Comparison of the 3-dimensional structure and electrostatic properties of wild-type and mutated TNFR1 proteins was performed by in silico homology modeling. TNFR1 expression was assessed by FACS analysis, western blotting and ELISA in lysates and supernatants of HEK293T cells transiently expressing wild-type and mutated TNFR1.

Results

A TNFRSF1A heterozygous missense mutation, R92W (c.361C>T), was shown to perfectly segregate with typical TRAPS manifestations within the family investigated (p<5.10−4). It was associated with very high disease penetrance (0.9). Prediction of its impact on the protein structure revealed local conformational changes and alterations of the receptor electrostatic properties. R92W also impairs the TNFR1 expression at the cell surface and the levels of soluble receptor. Similar results were obtained with R92P, another mutation previously identified in a very small familial form with incomplete penetrance and variable expressivity. In contrast, TNFR1-R92Q behaves like the wild-type receptor.

Conclusions

These data demonstrate the pathogenicity of a mutation affecting arginine 92, a residue whose involvement in inflammatory disorders is deeply debated. Combined with previous reports on arginine 92 mutations, this study discloses an unusual situation in which different amino acid substitutions at the same position in the protein are associated with a clinical spectrum bridging Mendelian to multifactorial conditions.  相似文献   
4.
5.
6.
Plasma Platelet-activating-Factor (PAF)-acetylhydrolase (PAF-AH also named lipoprotein-PLA(2) or PLA(2)G7 gene) is secreted by macrophages, it degrades PAF and oxidation products of phosphatidylcholine produced upon LDL oxidation and/or oxidative stress, and thus is considered as a potentially anti-inflammatory enzyme. Cloning of PAF-AH has sustained tremendous promises towards the use of PAF-AH recombinant protein in clinical situations. The reason for that stems from the numerous animal models of inflammation, atherosclerosis or sepsis, where raising the levels of circulating PAF-AH either through recombinant protein infusion or through the adenoviral gene transfer showed to be beneficial. Unfortunately, neither in human asthma nor in sepsis the recombinant PAF-AH showed sufficient efficacy. One of the most challenging questions nowadays is as to whether PAF-AH is pro- or anti-atherogenic in humans, as PAF-AH may possess a dual pro- and anti-inflammatory role, depending on the concentration and the availability of potential substrates. It is equally possible that the plasma level of PAF-AH is a diagnostic marker of ongoing atherosclerosis.  相似文献   
7.

Background

Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder due to MEFV mutations and one of the most frequent Mediterranean genetic diseases. The observation of many heterozygous patients in whom a second mutated allele was excluded led to the proposal that heterozygosity could be causal. However, heterozygosity might be coincidental in many patients due to the very high rate of mutations in Mediterranean populations.

Objective

To better delineate the pathogenicity of heterozygosity in order to improve genetic counselling and disease management.

Methods

Complementary statistical approaches were used: estimation of FMF prevalence at population levels, genotype comparison in siblings from 63 familial forms, and genotype study in 557 patients from four Mediterranean populations.

Results

At the population level, we did not observe any contribution of heterozygosity to disease prevalence. In affected siblings of patients carrying two MEFV mutations, 92% carry two mutated alleles, whereas 4% are heterozygous with typical FMF diagnosis. We demonstrated statistically that patients are more likely to be heterozygous than healthy individuals, as shown by the higher ratio heterozygous carriers/non carriers in patients (p<10−7–p<0.003). The risk for heterozygotes to develop FMF was estimated between 2.1×10−3 and 5.8×10−3 and the relative risk, as compared to non carriers, between 6.3 and 8.1.

Conclusions

This is the first statistical demonstration that heterozygosity is not responsible for classical Mendelian FMF per se, but constitutes a susceptibility factor for clinically-similar multifactorial forms of the disease. We also provide a first estimate of the risk for heterozygotes to develop FMF.  相似文献   
8.
Platelet-activating factor-acetylhydrolase (PAF-AH) is a lipoprotein-associated phospholipase A2 capable of hydrolyzing platelet-activating factor (PAF) and oxidatively modified phospholipids. We studied the plasma- and lipoprotein-associated PAF-AH activity in patients with primary hypercholesterolemia. Thirty-eight unrelated patients with heterozygous familial hypercholesterolemia (HeteroFH), five patients with homozygous FH (HomoFH), and 33 patients with primary non-FH hypercholesterolemia (NonFH) participated in the study. In all patient groups the plasma PAF-AH activity was significantly elevated compared with 33 normolipidemic controls, the HomoFH having the highest and the NonFH patients showing the lowest enzyme activity. Gradient ultracentrifugation studies showed that this increase is not only due to the elevation in the plasma LDL but also to the increase in the PAF-AH activity associated with each LDL subfraction, being more profound in the small-dense LDL-5. Unlike LDL, no difference in the HDL-associated PAF-AH activity was observed among all groups. Consequently, an altered distribution of enzyme activity among apolipoprotein B (apoB)- and apolipoprotein A-I (apoA-I)-containing lipoproteins is observed in hypercholesterolemic patients, resulting in a significant decrease in the ratio of the HDL-associated PAF-AH to the total plasma enzyme activity compared with controls. This reduction is proportional to the increase of the plasma LDL-cholesterol (LDL-C) levels and consequently to the severity of the hypercholesterolemia. Thus, the ratio of HDL-associated PAF-AH-total plasma enzyme activity may be useful as a potential marker of atherogenicity in subjects with primary hypercholesterolemia.  相似文献   
9.
Human plasma PAF-AH (platelet-activating factor-acetylhydrolase) is a Ca(2)+-independent phospholipase A2 of hematopoietic origin associated with LDL and HDL; it degrades PAF and oxidizes phospholipids. We show that human macrophages synthesize PAF-AH as a premedial Golgi precursor containing high mannose N-linked glycans. Secreted PAF-AH possesses a molecular mass of approximately 55 kDa and contains mature N-linked glycans. Secreted PAF-AH activity (90 +/- 4% of the total) bound to a wheat germ lectin column and could be eluted with N-acetylglucosamine, whereas digestion with N-acetylneuraminidase II completely abolished enzyme absorption. Tunicamycin significantly reduced cell-associated PAF-AH activity and inhibited enzyme secretion; but it did not alter the ratio of secreted to cell-associated enzyme (1.8 at 6 h and 3.1 at 24 h), suggesting that glycosylation is not essential for PAF-AH secretion. Digestion of cell-associated PAF-AH or secreted PAF-AH with peptide N-glycosidase F affected neither catalytic activity nor its resistance to proteolysis with trypsin or proteinase K; in addition, it did not affect PAF-AH association with LDL, but significantly increased its association with HDL. We suggest that macrophage-derived PAF-AH contains heterogeneous asparagine-conjugated sugar chain(s) involving sialic acid, which hinders its association with HDL but does not influence the secretion, catalytic activity, or resistance of PAF-AH to proteases.  相似文献   
10.
Chronic kidney disease is linked to systemic inflammation and to an increased risk of ischemic heart disease and atherosclerosis. Endothelial dysfunction associates with hypertension and vascular disease in the presence of chronic kidney disease but the mechanisms that regulate the activation of the endothelium at the early stages of the disease, before systemic inflammation is established remain obscure. In the present study we investigated the effect of serum derived from patients with chronic kidney disease either before or after hemodialysis on the activation of human endothelial cells in vitro, as an attempt to define the overall effect of uremic toxins at the early stages of endothelial dysfunction. Our results argue that uremic toxins alter the biological actions of endothelial cells and the remodelling of the extracellular matrix before signs of systemic inflammatory responses are observed. This study further elucidates the early events of endothelial dysfunction during toxic uremia conditions allowing more complete understanding of the molecular events as well as their sequence during progressive renal failure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号