首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   12篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1996年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
1.
The fine structure of the regular arrays of subunits seen on both plasmalemma fracture faces in resting and starved Saccharomyces cerevisiae (baker's yeast) has been compared using different freeze-fracture replication methods. Freeze-cleaving was carried out at 173 degrees, 133 degrees, and 108 degrees K under a vacuum of 2 X 10(-7) torr (2.6 X 10(- 7)mbar) or under liquid nitrogen at atmosphereic pressure. Independent of the preparation conditions (fracturing temperature, and whether cleaved under vacuum or liquid nitrogen), resting and starved yeast show a significant difference in the morphology of the subunits forming the regular arrays. The regularly arranged particles of the P face of the plasmalemma of starved yeast have a clear craterlike structure which has previously been reported to be demonstrated only by freeze-etching at very low temperatures in ultrahigh vacuum. A complementary structure is seen on the plasmalemma E face. Prolonged exposures of fracture faces under the protection of liquid nitrogen-cooled shrouds have shown that, because of the consequent drastic reduction of condensable gases in the specimen area, no detectable condensation contamination of exposed fracture faces occurs within 15 min at a specimen temperature of 108 degrees K. This shows that a complicated ultrahigh vacuum technology is not required for high resolution freeze- etching.  相似文献   
2.
Specific 3H-diazepam binding was measured in vitro in adult mouse (strain, Crl=CD-1) brain after four days of an inductive dose of phenobarbital pretreatment (i.p.). Sexual dimorphism was observed in 3H-diazepam brain binding, female mice had significantly higher benzodiazepine binding than males without any differences in apparent affinity constants (KD). Phenobarbital pretreatment caused a significant decrease in the maximal number of binding sites (Bmax) as well as in dissociation rate constants in both sexes.  相似文献   
3.
The conductance of carbon dioxide (CO2) from the substomatal cavities to the initial sites of CO2 fixation (gm) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm, (iii) the technical limitation of estimating gm, which cannot be directly measured, and (iv) how gm responds to long‐ and short‐term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two‐resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three‐dimensional (3‐D) reaction‐diffusion models and 3‐D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm. Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.  相似文献   
4.
An actinomycete wild strain PM0626271 (= MTCC 5447), producing novel antibacterial compounds, was isolated from soil collected from Antarctica. The taxonomic status of the isolate was established by polyphasic approach. Scanning electron microscopy observations and the presence of LL‐Diaminopimelic acid in the cell wall hydrolysate confirmed the genus Streptomyces. Analysis of 16S rRNA gene sequence showed highest sequence similarity to Streptomyces radiopugnans (99%). The phylogenetic tree constructed using near complete 16S rRNA gene sequences of the isolate and closely related strains revealed that although the isolate fell within the S. radiopugnans gene subclade, it was allocated a different branch in the phylogenetic tree, separating it from the majority of the radiopugnans strains. Similar to type strain, S. radiopugnans R97T, the Antarctica isolate displayed thermo tolerance as well as resistance to 60Co gamma radiation, up to the dose of 15 kGy. However, media and salt tolerance studies revealed that, unlike the type strain, this isolate needed higher salinity for its growth. This is the first report of S. radiopugnans isolated from the Antarctica region. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Streptomyces radiopugnans MTCC 5447 is JQ723477 .

Significance and Impact of the Study

The study presents the first report of isolation of Streptomyces radiopugnans from Antarctica. To date, there is only one publication regarding S. radiopugnans R97T isolated from radiation‐polluted soil. Like the type strain, Antarctica isolate was thermotolerant and radiotolerant, but in addition, it required salts for growth and did not degrade phenol. We envisaged that metabolic pattern of the same species varies based on acclimatization in its native ecological habitat. Additionally, Antarctica isolate had produced novel antibacterial compounds (patent‐US2012/0156295). The study highlighted that least explored extreme regions like Antarctica are rich resources of novel microbial strains producing novel bioactive compounds.  相似文献   
5.
The acidic amino acids (Asp, Glu) and their amides (Asn, Gln) support rapid growth of a variety of Pseudomonas strains when provided as the sole source of carbon and nitrogen. All key enzymes of glutamate metabolism were detected in P. fluorescence, with glutaminase and asparaginase showing the highest specific activities. A periplasmic glutaminase/asparaginase activity (PGA) was found in all pseudomonads examined, including a number of root-colonizing biocontrol strains. The enzyme was purified and shown to be identical with the ansB gene product described previously. In addition to PGA, P. fluorescens contains a cytoplasmic asparaginase with marked specificity for Asn. PGA is strongly and specifically induced by its substrates (Asn, Gln) but also by the reaction products (Asp, Glu). In addition, PGA is subject to efficient carbon catabolite repression by glucose and by citrate cycle metabolites. A mutant of P. putida KT2440 with a disrupted ansB gene was unable to utilize Gln, whereas growth of the mutant on other amino acids was normal.  相似文献   
6.
Conformational preferences of the hypermodified nucleic acid bases N6-(Delta(2)-cis-hydroxyisopentenyl)adenine, cis-io(6)Ade also known as cis-zeatin, and N(6)-(Delta(2)-trans-hydroxyisopentenyl)adenine, trans-io(6)ade or trans-zeatin, and 2-methylthio derivatives of these cis-ms(2)io(6)Ade or cis-ms(2)zeatin, and trans-ms(2)io6Ade or trans-ms(2)zeatin have been investigated theoretically by the quantum chemical Perturbative Configuration Interaction with Localized Orbitals (PCILO) method. Automated geometry optimization using quantum chemical MNDO, AM1 and PM3 methods has also been made to compare the salient features. The predicted most stable conformation of cis-io(6)Ade, trans-io(6)Ade, cis-ms(2)io(6)Ade and trans-ms(2)io(6)Ade are such that in each of these molecules the isopentenyl substituent spreads away (has "dista" conformation) from the five membered ring imidazole moiety of the adenine. The atoms N(6), C(10) and C(11) remain coplanar with the adenine ring in the predicted preferred conformation for each of these molecules. In cis-io(6)Ade as well as cis-ms(2)io(6)Ade the hydroxyl oxygen may participate in intramolecular hydrogen bonding with the H-C(10)-H group. In trans-io(6)Ade the hydroxyl group is oriented towards the H-C(2) instead. This orientation is retained in trans-ms(2)io(6)Ade, possible O-H...S hydrogen bonding may be a stabilizing factor. In all these four modified adenines C(11)-H is favourably placed to participate in intramolecular hydrogen bonding with N(1). In cis-ms(2)io(6)Ade as well as trans-ms(2)io(6)Ade the 2-methylthio group preferentially orients on the same side as C(2)-N(3) bond, due to this non-obstrusive placing, orientation of the hydroxyisopentenyl substituent remains unaffected by 2-methylthiolation. Thus the N(1) site remains shielded irrespective of the 2-methylthiolation status in these various cis-and trans-zeatin analogs alike. Firmly held orientation of hydroxyisopentenyl substituent in zeatin isomers and derivatives, in contrast to adaptable orientation of isopentenyl substituent in i(6)Ade and ms(2)i(6)Ade, may account for the increased efficiency of suppressor tRNA and reduced codon context sensitivity accompanied with the occurrence of ms(2)-zeatin (ms(2)io(6)Ade) modification.  相似文献   
7.
8.
9.
We investigated the involvement of ClC-3 chloride channels in endosomal acidification by measurement of endosomal pH and chloride concentration [Cl-] in control versus ClC-3-deficient hepatocytes and in control versus ClC-3-transfected Chinese hamster ovary cells. Endosomes were labeled with pH or [Cl-]-sensing fluorescent transferrin (Tf), which targets to early/recycling endosomes, or alpha2-macroglobulin (alpha2M), which targets to late endosomes. In pulse label-chase experiments, [Cl-] was 19 mM just after internalization in alpha2M-labeled endosomes in primary cultures of hepatocytes from wild-type mice, increasing to 58 mM over 45 min, whereas pH decreased from 7.1 to 5.4. Endosomal acidification and [Cl-] accumulation were significantly impaired in hepatocytes from ClC-3 knock-out mice, with [Cl-] increasing from 16 to 43 mM and pH decreasing from 7.1 to 6.0. Acidification and Cl- accumulation were blocked by bafilomycin. In Tf-labeled endosomes, [Cl-] was 46 mM in wild-type versus 35 mM in ClC-3-deficient hepatocytes at 15 min after internalization, with corresponding pH of 6.1 versus 6.5. Approximately 4-fold increased Cl- conductance was found in alpha2M-labeled endosomes isolated from hepatocytes of wild-type versus ClC-3 null mice. In contrast, Golgi acidification was not impaired in ClC-3-deficient hepatocytes. In transfected Chinese hamster ovary cells expressing ClC-3A, endosomal acidification and [Cl-] accumulation were enhanced. [Cl-] in alpha2M-labeled endosomes was 42 mM (control) versus 53 mM (ClC-3A) at 45 min, with corresponding pH 5.8 versus 5.2; [Cl-] in Tf-labeled endosomes at 15 min was 37 mM (control) versus 49 mM (ClC-3A) with pH 6.3 versus 5.9. Our results provide direct evidence for involvement of ClC-3 in endosomal acidification by Cl- shunting of the interior-positive membrane potential created by the vacuolar H+ pump.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号