首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   3篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 281 毫秒
1
1.
An alternative 16S rRNA-targeted oligonucleotide probe specific for Archaea was developed and used for detection of methanogens in anaerobic reactors. The designed probe was checked for its specificity by computer-aided comparative sequence analysis. For in situ application, optimal stringency conditions were adjusted by performing whole cell hybridization using target and nontarget organisms. Anaerobic sludge samples were examined by in situ hybridization for methanogenic populations. The relative abundance of methanogens was monitored with epifluorescence microscopy. Individual cells could be visualized with strong fluorescence signals after hybridization with the newly developed probe.  相似文献   
2.
The ability of marine bacteria to adhere to detrital particulate organic matter and rapidly switch on metabolic genes in an effort to reproduce is an important response for bacterial survival in the pelagic marine environment. The goal of this investigation was to evaluate the relationship between chitinolytic gene expression and extracellular chitinase activity in individual cells of the marine bacterium Pseudoalteromonas sp. strain S91 attached to solid chitin. A green fluorescent protein reporter gene under the control of the chiA promoter was used to evaluate chiA gene expression, and a precipitating enzyme-linked fluorescent probe, ELF-97-N-acetyl-beta-D-glucosaminide, was used to evaluate extracellular chitinase activity among cells in the bacterial population. Evaluation of chiA expression and ELF-97 crystal location at the single-cell level revealed two physiologically distinct subpopulations of S91 on the chitin surface: one that was chitinase active and remained associated with the surface and another that was non-chitinase active and released daughter cells into the bulk aqueous phase. It is hypothesized that the surface-associated, non-chitinase-active population is utilizing chitin degradation products that were released by the adjacent chitinase-active population for cell replication and dissemination into the bulk aqueous phase.  相似文献   
3.
The effects of chitosan addition on treatment of palm oil mill effluent were investigated using two lab-scale upflow anaerobic sludge bed (UASB) reactors: (1) with chitosan addition at the dosage of 2 mg chitosan per g volatile suspended solids on the first day of the operation (R1), (2) without chitosan addition (the control, R2). The reactors were inoculated with mesophilic anaerobic sludge which was acclimatized to a thermophilic condition with a stepwise temperature increase of 5 °C from 37 to 57 °C. The OLR ranged from 2.23 to 9.47 kg COD m−3 day−1. The difference in biogas production rate increased from non-significant to 18% different. The effluent volatile suspended solids of R1 was 65 mg l−1 lower than that of R2 on Day 123. 16S rRNA targeted denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial community indicated that some methanogens in the genus Methanosaeta can be detected in R1 but not in R2.  相似文献   
4.
Sequence data for genes encoding 16S rRNA indicated that the marine strain previously named Pseudomonas sp. strain S9 would be better identified as a Pseudoalteromonas sp. By use of transposon mutagenesis, a chitinase-negative mutant of S9 with a lacZ reporter gene insertion was isolated. Part of the interrupted gene was cloned and sequenced. The deduced amino acid sequence had homology to sequences of bacterial chitinases. Expression of the chitinase gene promoter was quantified by measuring the lacZ reporter gene product, beta-galactosidase, beta-Galactosidase production was induced 10-fold by N-acetylglucosamine and 3-fold by chitin in minimal medium. Repression of beta-galactosidase synthesis was observed in rich medium either with or without chitin but was not observed in minimal medium containing glucose. The chitinase gene promoter was induced by starvation and higher-than-ambient levels of carbon dioxide but not by cadmium ion, heat or cold shock, or UV exposure.  相似文献   
5.
Latex rubber sheet wastewater (non sterile wastewater: RAW) was treated efficiently using a stimulated Rhodopseudomonas palustris P1 inoculum with added fermented pineapple extract (FPE) under microaerobic light conditions. Optimization of wastewater treatment conditions using a central composite design (CCD) found that a 3 % stimulated P1 inoculum with 0.9 % added FPE and a 4-day retention time (RT) were the most suitable conditions. Calculations from CCD experiments predicted that a chemical oxygen demand (COD) of 3,005 mg/L could be 98 % removed, together with 79 % of suspended solids (SS) and 72 % of total sulfide (TtS). No H2S was detected, production costs were low and single cell protein (SCP) was a by-product. The results of the verification test had an error of only 4–8 % and confirmed removal of COD (initial COD 2,742 mg/L), SS and TtS at 94 %, 75 % and 66 %, respectively. These values were less than the best set obtained from the CCD experiment (2 % stimulated P1 inoculum, 0.75 % FPE and 4 days RT); upon repeating, this set could reduce 96 % of the COD, 78 % SS and 71 % TtS. The treated wastewater met the standard guidelines for irrigation use and no H2S was detected. The biomass obtaining after wastewater treatment from the best set consisted mostly of R. palustris P1; the biomass of this set had 65 % protein, 3 % fat, 8 % carbohydrate, 14 % ash and 10 % moisture. The results demonstrated that an inoculum of stimulated P1 grew well in RAW supplemented with FPE and could be considered to be an appropriate technology for effectively treating wastewater, with SCP as a by-product.  相似文献   
6.
This study characterized the microbial community and population dynamics in an anaerobic hybrid reactor (AHR) treating cassava starch wastewater. Methanogens and nonmethanogens were followed during the start-up and operation of the reactor, and linked to operational and performance data. Biomass samples taken from the sludge bed and packed bed zones of the AHR at intervals throughout the operational period were examined by 16S rRNA fluorescence in situ hybridization (FISH). The start-up seed and the reactor biomass were sampled during the feeding of the wastewater with a chemical oxygen demand (COD) value of 8 g L−1 and a hydraulic retention time (HRT) of 8 days. These samples were characterized by the predominance of cells with long-rod morphology similar to Methanosaeta spp. Following a sharp operational change, accomplished by increasing the COD concentration of the organic influent from 8 to 10 g L−1 and reducing the HRT from 8 to 5 days, there was a doubling of the organic loading rate, a reduction of the COD removal efficiency, as well as decreased methane content in the biogas and an accumulation of total volatile acids in the reactor. Moreover, this operational change resulted in a significant population shift from long-rod Methanosaeta-like cells to tetrad-forming Methanosarcina-like cells. The distributions of microbial populations involved in different zones of the AHR were determined. The results showed that nonmethanogens became the predominant population in both sludge and the packed bed zone. However, the percentage of methanogens in the packed bed zone was higher than that in the sludge bed zone. This higher percentage of methanogens was likely caused by the fact that the packed bed zone provided a suitable environmental condition with an appropriate nutrient availability for methanogen growth.  相似文献   
7.
Growth of the chitin-degrading marine bacterium S91 on solid surfaces under oligotrophic conditions was accompanied by the displacement of a large fraction of the surface-derived bacterial production into the flowing bulk aqueous phase, irrespective of the value of the surface as a nutrient source. Over a 200-h period of surface colonization, 97 and 75% of the bacterial biomass generated on biodegradable chitin and a nonnutritional silicon surface, respectively, detached to become part of the free-living population in the bulk aqueous phase. Specific surface-associated growth rates that included the cells that subsequently detached from the substrata varied depending on the nutritional value of the substratum and during the period of surface colonization. Specific growth rates of 3.79 and 2.83 day−1 were obtained when cells first began to proliferate on a pure chitin film and a silicon surface, respectively. Later, when cell densities on the surface and detached cells as CFU in the bulk aqueous phase achieved a quasi-steady state, specific growth rates decreased to 1.08 and 0.79 day−1 on the chitin and silicon surfaces, respectively. Virtually all of the cells that detached from either the chitin or the silicon surfaces and the majority of cells associated with the chitin surface over the 200-h period of surface colonization displayed no detectable expression of the chitin-degrading genes chiA and chiB. Cells displaying high levels of chiA-chiB expression were detected only on the chitin surface and then only clustered in discrete areas of the surface. Surface-associated, differential gene expression and displacement of bacterial production from surfaces represent adaptations at the population level that promote efficient utilization of limited resources and dispersal of progeny to maximize access to new sources of energy and maintenance of the population.  相似文献   
8.
Two broad-host-range vectors previously constructed for use in soil bacteria (A. G. Matthysse, S. Stretton, C. Dandie, N. C. McClure, and A. E. Goodman, FEMS Microbiol. Lett. 145:87–94, 1996) were assessed by epifluorescence microscopy for use in tagging three marine bacterial species. Expression of gfp could be visualized in Vibrio sp. strain S141 cells at uniform levels of intensity from either the lac or the npt-2 promoter, whereas expression of gfp could be visualized in Psychrobacter sp. strain SW5H cells at various levels of intensity only from the npt-2 promoter. Green fluorescent protein (GFP) fluorescence was not detected in the third species, Pseudoalteromonas sp. strain S91, when the gfp gene was expressed from either promoter. A new mini-Tn10-kan-gfp transposon was constructed to investigate further the possibilities of fluorescence tagging of marine bacteria. Insertion of mini-Tn10-kan-gfp generated random stable mutants at high frequencies with all three marine species. With this transposon, strongly and weakly expressed S91 promoters were isolated. Visualization of GFP by epifluorescence microscopy was markedly reduced when S91 (mini-Tn10-kan-gfp) cells were grown in rich medium compared to that when cells were grown in minimal medium. Mini-Tn10-kan-gfp was used to create an S91 chitinase-negative, GFP-positive mutant. Expression of the chi-gfp fusion was induced in cells exposed to N′-acetylglucosamine or attached to chitin particles. By laser scanning confocal microscopy, biofilms consisting of microcolonies of chi-negative, GFP+ S91 cells were found to be localized several microns from a natural chitin substratum. Tagging bacterial strains with GFP enables visualization of, as well as monitoring of gene expression in, living single cells in situ and in real time.  相似文献   
9.
Growth of the chitin-degrading marine bacterium S91 on solid surfaces under oligotrophic conditions was accompanied by the displacement of a large fraction of the surface-derived bacterial production into the flowing bulk aqueous phase, irrespective of the value of the surface as a nutrient source. Over a 200-h period of surface colonization, 97 and 75% of the bacterial biomass generated on biodegradable chitin and a nonnutritional silicon surface, respectively, detached to become part of the free-living population in the bulk aqueous phase. Specific surface-associated growth rates that included the cells that subsequently detached from the substrata varied depending on the nutritional value of the substratum and during the period of surface colonization. Specific growth rates of 3.79 and 2.83 day(-1) were obtained when cells first began to proliferate on a pure chitin film and a silicon surface, respectively. Later, when cell densities on the surface and detached cells as CFU in the bulk aqueous phase achieved a quasi-steady state, specific growth rates decreased to 1.08 and 0.79 day(-1) on the chitin and silicon surfaces, respectively. Virtually all of the cells that detached from either the chitin or the silicon surfaces and the majority of cells associated with the chitin surface over the 200-h period of surface colonization displayed no detectable expression of the chitin-degrading genes chiA and chiB. Cells displaying high levels of chiA-chiB expression were detected only on the chitin surface and then only clustered in discrete areas of the surface. Surface-associated, differential gene expression and displacement of bacterial production from surfaces represent adaptations at the population level that promote efficient utilization of limited resources and dispersal of progeny to maximize access to new sources of energy and maintenance of the population.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号