首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 156 毫秒
1
1.
Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.  相似文献   
2.
Thermostable enzymes that hydrolyze lignocellulosic materials provide potential advantages in process configuration and enhancement of production efficiency over their mesophilic counterparts in the bioethanol industry. In this study, the dynamics of β-1,4-endoglucanases (EC: 3.2.1.4) from family 5 of glycoside hydrolases (GH5) were investigated computationally. The conformational flexibility of 12 GH5 cellulases, ranging from psychrophilic to hyperthermophilic, was investigated by molecular dynamics (MD) simulations at elevated temperatures. The results indicated that the protein flexibility and optimum activity temperatures are appreciably correlated. Intra-protein interactions, packing density and solvent accessible area were further examined in crystal structures to investigate factors that are possibly involved in higher rigidity of thermostable cellulases. The MD simulations and the rules learned from analyses of stabilizing factors were used in design of mutations toward the thermostabilization of cellulase C, one of the GH5 endoglucanases. This enzyme was successfully stabilized both chemically and thermally by introduction of a new disulfide cross-link to its highly mobile 56-amino acid subdomain.  相似文献   
3.
SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N5-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP+ is the last product to be released. The presence of NADP+ is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP+ to slide into position for stabilization of the C4a-hydroperoxyflavin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号