首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有41条查询结果,搜索用时 781 毫秒
1.
ObjectiveInflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats.Material and methodsThe animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered.ResultsAdministration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001).ConclusionBased on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system.  相似文献   
2.

Key message

The P SAG12 -ipt gene was transferred to miniature rose, as the first woody species, resulting in increased ethylene resistance due to specific up-regulation of the ipt gene under senescence promoting conditions.

Abstract

Transgenic plants of Rosa hybrida ‘Linda’ were obtained via transformation with Agrobacterium tumefaciens strain harboring the binary vector pSG529(+) containing the P SAG12 -ipt construct. A. tumefaciens strains AGL1, GV3850 and LBA4404 (containing P35S-INTGUS gene) were used for transformation of embryogenic callus, but transgenic shoots were obtained only when AGL1 was applied. The highest transformation frequency was 10 % and it was achieved when half MS medium was used for the dilution of overnight culture of Agrobacterium. Southern blot confirmed integration of 1–6 copies of the nptII gene into the rose genome in the tested lines. Four transgenic lines were obtained which were morphologically true-to-type and indistinguishable from Wt shoots while they were in in vitro cultures. Adventitious root induction was more difficult in transgenic shoots compared to the Wt shoots, however, one of the transgenic lines (line 6) was rooted and subsequently analyzed phenotypically. The ipt expression levels were determined in this line after exposure to exogenous ethylene (3.5 μl l?1) and/or darkness. Darkness resulted in twofold up-regulation of ipt expression, whereas darkness combined with ethylene caused eightfold up-regulation in line 6 compared to Wt plants. The transgenic line had significantly higher content of chlorophyll at the end of the treatment period compared to Wt plants.  相似文献   
3.

Background and aims

Extensive worldwide dryland degradation calls for identification of functional traits critical to dryland plant performance and restoration outcomes. Most trait examination has focused on drought tolerance, although most dryland systems are water and nutrient co-limited. We studied how drought impacts both plant water relations and nitrogen (N) nutrition.

Methods

We grew a suite of grasses common to the Intermountain West under both well-watered and drought conditions in the greenhouse. These grasses represented three congener pairs (Agropyron, Elymus, Festuca) differing in their habitat of origin (“wetter” or “drier”). We measured growth, water relations, N resorption efficiency and proficiency and photosynthetic N use efficiency in response to drought.

Results

Drought decreased growth and physiological function in the suite of grasses studied, including a negative impact on plant N resorption efficiency and proficiency. This effect on resorption increased over the course of the growing season. Evolutionary history constrained species responses to treatment, with genera varying in the magnitude of their response to drought conditions. Surprisingly, habitat of origin influenced few trait responses.

Conclusions

Drought impacted plant N conservation, although these responses also were constrained by evolutionary history. Future plant development programs should consider drought tolerance not only from the perspective of water relations but also plant mineral nutrition, taking into account the role of phylogeny.  相似文献   
4.
A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was 0.28 h−1, the Peclet dispersion number being 45, with a mean relative error of 2%. The model based on the Young equation predicted the behaviour of the reactor more accurately showing deviations lower than 10% between the theoretical and experimental values of the fractional conversion, the mean relative error being 0.9% in this case.  相似文献   
5.
6.
Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.  相似文献   
7.
Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.  相似文献   
8.
9.
In order to characterize the potency of menstrual blood stem cells (MenSCs) for future cell therapy of neurological disorders instead of bone marrow stem cells (BMSCs) as a well-known and conventional source of adult stem cells, we examined the in vitro differentiation potential of these stem cells into neural-like cells. The differentiation potential of MenSCs to neural cells in comparison with BMSCs was assessed under two step neural differentiation including conversion to neurosphere-like cells and final differentiation. The expression levels of Nestin, Microtubule-associated protein 2, gamma-aminobutyric acid type B receptor subunit 1 and 2, and Tubulin, beta 3 class III mRNA and/or protein were up-regulated during development of MenSCs into neurosphere-like cells (NSCs) and neural-like cells. The up-regulation level of these markers in differentiated neural-like cells from MenSCs was comparable with differentiated cells from BMSCs. Moreover, both differentiated MenSCs and BMSCs expressed high levels of potassium, calcium and sodium channel genes developing functional channels with electrophysiological recording. For the first time, we demonstrated that MenSCs are a unique cell population with differentiation ability into neural-like cells comparable to BMSCs. In addition, we have introduced an approach to generate NSCs from MenSCs and BMSCs and their further differentiation into neural-like cells in vitro. Our results hold a promise to future stem cell therapy of neurological disorders using NSCs derived from menstrual blood, an accessible source in every woman.  相似文献   
10.
Different strategies used for treatment of cancer which has some major side effects. In this paper we hypothesized targeted delivery lipid based nanoparticles containing saturated solution of NaCl for elimination of cancerous cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号