首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   4篇
  2019年   2篇
  2017年   5篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1986年   3篇
  1976年   1篇
排序方式: 共有44条查询结果,搜索用时 62 毫秒
1.
Incontinentia pigmenti (IP), or "Bloch-Sulzberger syndrome," is an X-linked dominant disorder characterized by abnormalities of skin, teeth, hair, and eyes; skewed X-inactivation; and recurrent miscarriages of male fetuses. IP results from mutations in the gene for NF-kappaB essential modulator (NEMO), with deletion of exons 4-10 of NEMO accounting for >80% of new mutations. Male fetuses inheriting this mutation and other "null" mutations of NEMO usually die in utero. Less deleterious mutations can result in survival of males subjects, but with ectodermal dysplasia and immunodeficiency. Male patients with skin, dental, and ocular abnormalities typical of those seen in female patients with IP (without immunodeficiency) are rare. We investigated four male patients with clinical hallmarks of IP. All four were found to carry the deletion normally associated with male lethality in utero. Survival in one patient is explained by a 47,XXY karyotype and skewed X inactivation. Three other patients possess a normal 46,XY karyotype. We demonstrate that these patients have both wild-type and deleted copies of the NEMO gene and are therefore mosaic for the common mutation. Therefore, the repeat-mediated rearrangement leading to the common deletion does not require meiotic division. Hypomorphic alleles, a 47,XXY karyotype, and somatic mosaicism therefore represent three mechanisms for survival of males carrying a NEMO mutation.  相似文献   
2.
Chlorocatechol 1,2-dioxygenase (CC 1,2-DO), chloromuconate cycloisomerase (CMCI), chloromuconolactone isomerase (CMLI), and dienolactone hydrolase (DELH), the key enzymes of a new modified ortho-pathway in Rhodococcus opacus 1CP cells utilizing 2-chlorophenol via a 3-chlorocatechol branch of a modified ortho-pathway, were isolated and characterized. CC 1,2-DO showed the maximum activity with 3-chlorocatechol; its activity with catechol and 4-chlorocatechol was 93 and 50%, respectively. The enzyme of the studied pathway had physicochemical properties intermediate between the pyrocatechase of ordinary and chlorocatechase of modified pathways described earlier for this strain. In contrast to the enzymes investigated earlier, CMCI of the new pathway exhibited high substrate specificity. The enzyme had K m for 2-chloromuconate of 142.86 M, V max = 71.43 U/mg, pH optimum around 6.0, and temperature optimum at 65°C. CMCI converted 2-chloromuconate into 5-chloromuconolactone. CMLI converted 5-chloromuconolactone into cis-dienolactone used as a substrate by DELH; this enzyme did not convert trans-dienolactone. DELH had Km for cis-dienolactone of 200 M, V max = 167 U/mg, pH optimum of 8.6, and temperature optimum of 40°C. These results confirm the existence of a new modified ortho-pathway for utilization of 2-chlorophenol by R. opacus 1CP.  相似文献   
3.
Of all NMR-observable isotopes 19F is the one most convenient for studies on the biodegradation of environmental pollutants and especially for fast initial metabolic screening of newly isolated organisms. In the past decade we have identified the 19F NMR characteristics of many fluorinated intermediates in the microbial degradation of fluoroaromatics including especially fluorophenols. In the present paper we give an overview of results obtained for the initial steps in the aerobic microbial degradation of fluorophenols, i.e. the aromatic hydroxylation to di-, tri- or even tetrahydroxybenzenes ultimately suitable as substrates for the second step, ring cleavage by dioxygenases. In addition we present new results from studies on the identification of metabolites resulting from reaction steps following aromatic ring cleavage, i.e. resulting from the conversion of fluoromuconates by chloromuconate cycloisomerase. Together the presented data illustrate the potential of the 19F NMR technique for (1) fast initial screening of biodegradative pathways, i.e. for studies on metabolomics in newly isolated microorganisms, and (2) identification of relatively unstable pathway intermediates like fluoromuconolactones and fluoromaleylacetates. Journal of Industrial Microbiology & Biotechnology (2001) 26, 22–34. Received 20 April 2000/ Accepted in revised form 22 May 2000  相似文献   
4.
Dissociation of Rhodococcus opacus 1CP during cultivation in different media (containing phenol and its monochlorinated derivatives as the sole source of carbon and energy) was studied. Three variants of strain 1CP (S1, S2, and R) differing in the morphology of cells and colonies, lipid composition, and manner of growth on phenol and monochlorophenols were isolated. It was shown that 2- and 4-chlorophenols were most actively degraded by the smooth (S) forms of the culture, and that the rough (R) form predominated when the culture was grown in a rich medium. The S forms differed from the R forms of the strain by an increased content of cardiolipin, fatty acids, and phosphatidylethanolamine.  相似文献   
5.
The strain Rhodococcus ruber P25 utilizes 4-chlorobiphenyl (4CB) and 4-chlorobenzoic acid (4CBA) as sole carbon and energy sources. 4CB degradation by washed cells of strain P25 was accompanied by transient formation of 4CBA, followed by its utilization and release of equimolar amounts of chloride ions into the medium. The strain R. ruber P25 possessed active enzyme systems providing 4CBA degradation via the stages of formation of intermediates, para-hydroxybenzoate (PHBA) and protocatechuic acid (PCA), to compounds of the basic metabolism. The involvement of protocatechuate 4,5-dioxygenase in 4CBA degradation by rhodococci was revealed. It was established that the initial stage of 4CBA degradation (dehalogenation) in the strain R. ruber P25 was controlled by the fcbA and fcbB genes encoding 4-CBA-CoA ligase and 4-CBA-CoA dehalogenase, respectively. The genes encoding 4CBA dehalogenase components have not been previously detected and characterized in bacteria of the genus Rhodococcus.  相似文献   
6.
During cultivation in a liquid medium, the bacterium Rhodococcus opacus 1G was capable of growing on phenol at a concentration of up to 0.75 g/l. Immobilization of Rhodococcus opacus 1G had a positive effect on cell growth in the presence of phenol at high concentrations. The substrate at concentrations of 1.0 and 1.5 g/l was completely utilized over 24 and 48 h, respectively. The key enzymes of phenol degradation (two catechol 1,2-dioxygenases and muconate cycloisomerase) were isolated. One of the dioxygenases was very unstable. By substrate specificity, another enzyme belonged to catechol 1,2-dioxygenases of the classical ortho-pathway. Chlorocatechols and chlorophenols served as competitive inhibitors of catechol 1,2-dioxygenases. The inhibitory effect of other aromatic compounds was less significant. Our results suggest that this strain holds promise for bioremediation of phenol wastewater.  相似文献   
7.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   
8.
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code 1S9A) as a starting model and refined at 1.9 A resolution (R(free) 21.9%; R-factor 17.4%). The analysis of the structure and of the kinetic parameters for a series of different substrates, and the comparison with the corresponding data for the 4-chlorocatechol 1,2-dioxygenase isolated from the same bacterial strain, provides evidence of which active site residues are responsible for the observed differences in substrate specificity. Among the amino acid residues expected to interact with substrates, only three are altered Val53(Ala53), Tyr78(Phe78) and Ala221(Cys224) (3-chlorocatechol 1,2-dioxygenase(4-chlorocatechol 1,2-dioxygenase)), clearly identifying the substitutions influencing substrate selectivity in these enzymes. The crystallographic asymmetric unit contains eight subunits (corresponding to four dimers) that show heterogeneity in the conformation of a co-crystallized molecule bound to the catalytic non-heme iron(III) ion resembling a benzohydroxamate moiety, probably a result of the breakdown of recently discovered siderophores synthesized by Gram-positive bacteria. Several different modes of binding benzohydroxamate into the active site induce distinct conformations of the interacting protein ligands Tyr167 and Arg188, illustrating the plasticity of the active site origin of the more promiscuous substrate preferences of the present enzyme.  相似文献   
9.
We have determined the DNA sequence of the two adjacent genes for the alpha and beta chains of tryptophan synthase in Pseudomonas aeruginosa, along with 34 5'-flanking and 799 3'-flanking base pairs. The gene order is trpBA as predicted from earlier genetic studies, and the two cistrons overlap by 4 bp; a ribosome binding site for the second gene is evident in the coding sequence of the first gene. We have also determined the location of three large deletions eliminating portions of each gene. A detailed comparison of the deduced P. aeruginosa amino acid sequence with those published for E. coli, Bacillus subtilis, and Saccharomyces cerevisiae shows much similarity throughout the beta and most of the alpha subunit. Most of the residues implicated by chemical modification or mutation as being critical for enzymatic activity are conserved, along with many others, suggesting that three-dimensional structure has remained largely constant during evolution. We also report the construction of a recombinant plasmid that overproduces a slightly modified alpha subunit from P. aeruginosa that can form a functionally effective multimer with normal E. coli beta 2 subunit in vivo.   相似文献   
10.
Degradation of para-toluate by Rhodococcus opacus 1cp was investigated. Activities of the key enzymes of this process, catechol 1,2-dioxygenase and muconate cycloisomerase, are detected in this microorganism. Growth on p-toluate was accompanied by induction of two catechol 1,2-dioxygenases. The substrate specificity and physicochemical properties of one enzyme are identical to those of chlorocatechol 1,2-dioxygenase; induction of the latter enzyme was observed during R. opacus 1cp growth on 4-chlorophenol. The other enzyme isolated from the biomass grown on p-toluate exhibited lower rate of chlorinated substrate cleavage compared to the catechol substrate. However, this enzyme is not identical to the catechol 1,2-dioxygenase cloned in this strain within the benzoate catabolism operon. This supports the hypothesis on the existence of multiple forms of dioxygenases as adaptive reactions of microorganisms in response to environmental stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号