首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有45条查询结果,搜索用时 62 毫秒
1.
We present a cladistic analysis of the Cirripedia Thoracica using morphological characters and the Acrothoracica and Ascothoracida as outgroups. The list of characters comprised 32 shell and soft body features. The operational taxonomic units (OTUs) comprised 26 well-studied fossil and extant taxa, principally genera, since uncertainty about monophyly exists for most higher ranking taxonomic units. Parsimony analyses using PAUP 3.1.1 and Hennig86 produced 189 trees of assured minimal length. We also examined character evolution in the consensus trees using MacClade and Clados. The monophyly of the Balanomorpha and the Verrucomorpha sensu stricto is confirmed, and all trees featured a sister group relationship between the ‘living fossil Neoverruca and me Brachylepadomorpha. In the consensus trees the sequential progression of ‘pedunculate‘sister groups up to a node containing Neolepas also conforms to current views, but certain well-established taxa based solely on plesiomorphies stand out as paraphyletic, such as Pedunculata (= Lepadomorpha); Eolepadinae, Scalpellomorpha and Chthamaloidea. The 189 trees differed principally in the position of shell-less pedunculates, Neoverruca, the scalpelloid Capitulum, and the interrelationships within the Balanomorpha, although the 50% majority rule consensus tree almost fully resolved the latter. A monophyletic Sessilia comprising both Verrucomorpha and Balanomorpha appeared among the shortest trees, but not in the consensus. A tree with a monophyletic Verrucomorpha including Neoverruca had a tree length two steps longer than the consensus trees. Deletion of all extinct OTUs produced a radically different tree, which highlights the importance of fossils in estimating cirripede phylogeny. Mapping of our character set onto a manually constructed cladogram reflecting die most recent scenario of cirripede evolution resulted in a tree length five steps longer than any of our shortest trees. Our analysis reveals that several key questions in cirripede phylogeny remain unsolved, notably the position of shell-less forms and the transition from ‘pedunculate‘to ‘sessile‘barnacles. The inclusion of more fossil species at this point in our understanding of cirripede phylogeny will only result in even greater levels of uncertainty. When constructing the character list we also identified numerous uncertainties in the homology of traits commonly used in discussing cirripede evolution. Our study highlights larval ultrastructure, detailed studies of early ontogeny, and molecular data as the most promising areas for future research.  相似文献   
2.
Both fibronectin and laminin were found by immunofluorescence as a matrix at the surface of normal rat kidney cells. These matrices were absent from the surface of virally transformed rat kidney cells. Soluble fibronectin and laminin were detected in the culture media of the transformed as well as the normal cells. Culture supernates of the transformed cells contained even more fibronectin than the supernates of the transformed cells contained even more fibronectin than the supernates of the normal cells while laminin was present in similar amounts in both culture media. This shows that the loss of fibronectin and laminin from the surface of the transformed cells is caused by failure of the cells to deposit these proteins into an insoluble matrix and not caused by inadequate production. Fibronectins isolated from culture media of the normal and transformed cells were similar in SDS polyacrylamide gel electrophresis. Laminin isolated from culture media by affinity chromatography on heparin-Sepharose followed by immunoprecipitation was composed of three main polypeptides, one with a molecular weight of 400,000 and two with a molecular weight close to 200,000 in both cell types. Fibronectins from both cell types were equally active in promoting cell attachment. Rat fibronectin from transformed cells, like normal cells, when applied to culture dishes coated with fibronectin, readily attached and spread on the substratum, requiring approximately the same amount of fibronectin as the normal cells. On the basis of these results it seem that the failure of the transformed cells to incorporate fibronectin into an insoluble cell surface matix is not a consequence of a demonstrable change in the functional characteristics of the fibronectin molecule or in the ability of the cells to interact with fibronectin. It may depend on as yet unidentified interactions of the cell surface. Similar interactions may be needed for the deposition of laminin into the matrix, because laminin was also absent from the surface of transformed cells, despite its being synthesized by these cells.  相似文献   
3.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
4.
Summary

Cirripedes are fascinating models for studying both functional constraints and diversity in larval development. Adult cirripedes display an amazing variation in morphology from sessile suspension feeders that still retain many crustacean characters to parasites that have lost virtually all arthropod traits. In contrast, cirripede larval development follows a common scheme with pelagic larvae comprising a series of nauplii followed by a cyprid. Variations are mostly concerned with whether or not the nauplii are feeding and the degree of abbreviation of development, culminating in species where the larvae hatch as cyprids. The cypris larvae are very similar among the ingroups of the Cirripedia, but interesting variations occur in structures used for substrate location and attachment. The cyprid is specialized to both swim through the water and actively explore the substratum by walking on the antennules and using an array of sensory organs in search for a suitable site to attach. This unique morphology and behavior of the cyprid have enabled the Cirripedia to colonize widely different habitats ranging from hard rock to soft animal tissue. Yet, the cyprid can metamorphose into juveniles as different as a setose feeding barnacle and the vermiform stages of the parasitic forms. This emphasizes the importance of the cyprid as one of the key features for the evolutionary success of the Cirripedia.  相似文献   
5.
Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non‐intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non‐stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNAi to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than‐average 5′untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5′UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis.  相似文献   
6.
This paper proposes an individualized approach to closed-loop control of depth of hypnosis during propofol anesthesia. The novelty of the paper lies in the individualization of the controller at the end of the induction phase of anesthesia, based on a patient model identified from the dose–response relationship during induction of anesthesia. The proposed approach is shown to be superior to administration of propofol based on population-based infusion schemes tailored to individual patients. This approach has the potential to outperform fully adaptive approaches in regards to controller robustness against measurement variability due to surgical stimulation. To streamline controller synthesis, two output filters were introduced (inverting the Hill dose–response model and the linear time-invariant sensor model), which yield a close-to-linear representation of the system dynamics when used with a compartmental patient model. These filters are especially useful during the induction phase of anesthesia in which a nonlinear dose–response relationship complicates the design of an appropriate controller. The proposed approach was evaluated in simulation on pharmacokinetic and pharmacodynamic models of 44 patients identified from real clinical data. A model of the NeuroSense, a hypnotic depth monitor based on wavelet analysis of EEG, was also included. This monitor is similar to the well-known BIS, but has linear time-invariant dynamics and does not introduce a delay. The proposed scheme was compared with a population-based controller, i.e. a controller only utilizing models based on demographic covariates for its tuning. On average, the proposed approach offered 25% improvement in disturbance attenuation, measured as the integrated absolute error following a step disturbance. The corresponding standard deviation from the reference was also decreased by 25%. Results are discussed and possible directions of future work are proposed.  相似文献   
7.
Recent work has suggested a link between h channels and epilepsy. In this issue of Neuron, Shah et al. demonstrate that a robust, postseizure decrease in h channels during a critical phase of epileptogenesis mechanistically underlies dendritic hyperexcitability in entorhinal-hippocampal pyramidal cells.  相似文献   
8.

Introduction  

The aim of the present study was to investigate the association between cardiovascular risk factors and endothelial dysfunction in patients with mixed connective tissue disease (MCTD) and to determine which biomarkers are associated with atherosclerotic complications, such as cardiovascular disease.  相似文献   
9.

Background  

Placental and fetal growth requires high rates of cellular turnover and differentiation, which contributes to conceptus development. The trophoblast has unique properties and a wide range of metabolic, endocrine and angiogenic functions, but the proliferative profile of the bovine placenta characterized by flow cytometry analysis and its role in fetal development are currently uncharacterized. Complete understanding of placental apoptotic and proliferative rates may be relevant to development, especially if related to the pathogenesis of pregnancy losses and placental abnormalities.  相似文献   
10.
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号