首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有20条查询结果,搜索用时 26 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.
Preliminary selective blockade of µ, δ1, δ2, κ1, and κ2 opioid receptors proved to have no effect on the incidence of ventricular arrhythmias during a 10-min coronary occlusion and subsequent reperfusion in ket-amine-anesthetized rats. We propose that the endogenous opioid system has no considerable role in regulation of heart resistance to the arrhythmogenic effect of short-term local ischemia and subsequent reperfusion.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 4, 2005, pp. 453–459.Original Russian Text Copyright © 2005 by Maslov, Lishmanov, Budankova, Stakheev, Solenkova, Barzakh, Oeltgen, Gross, Chang.  相似文献   
3.
4.
5.
We present an efficient computational architecture designed using supervised machine learning model to predict amyloid fibril forming protein segments, named AmylPepPred. The proposed prediction model is based on bio-physio-chemical properties of primary sequences and auto-correlation function of their amino acid indices. AmylPepPred provides a user friendly web interface for the researchers to easily observe the fibril forming and non-fibril forming hexmers in a given protein sequence. We expect that this stratagem will be highly encouraging in discovering fibril forming regions in proteins thereby benefit in finding therapeutic agents that specifically aim these sequences for the inhibition and cure of amyloid illnesses.

Availability

AmylPepPred is available freely for academic use at www.zoommicro.in/amylpeppred  相似文献   
6.
7.
It has been shown that mu-opioid receptor stimulation by intravenous administration of the selective mu receptor agonist DALDA in a dose of 0.1 mg/kg prevented ischemic and reperfusion arrhythmias in rats subjected to coronary artery occlusion (10 min) and reperfusion (10 min), and also increased the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis. These effects were abolished by pre-treatment with the selective mu receptor antagonist CTAP in a dose of 0.5 mg/kg or by prior injection of the opioid receptor antagonist naloxone methiodide (2 mg/kg) which does not penetrate the blood-braib barrier. Both antagonists by themselves had no effect on the incidence of occlusion or reperfusion-induced arrhythmias or on the ventricular fibrillation threshold. Pre-treatment with ATP-sensitive K+ channel (KATP channel) blocker glibenclamide in a dose of 0.3 mg/kg completely abolished the antiarrhythmic effect of DALDA. We believe that DALDA prevents occurrence of electrical instability during ischemia and reperfusion and increases the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis via stimulation of peripheral mu-opioid receptor which appear to be coupled to the KATP channel.  相似文献   
8.
The effects of the selective delta-1 (delta(1)) opioid receptor agonist, DPDPE, and the selective delta(2) opioid receptor agonist, DSLET, have been studied on the ventricular fibrillation threshold (VFT) in rats with an experimental post-infarction cardiosclerosis (CS). It has been found that CS induced a significant decrease in VFT. This CS-induced decrease in VFT was significantly reversed by intravenous administration of DPDPE (0.1 mg/kg) 10 min before VFT measurement. On the contrary, intravenous injection of DSLET (0.5 mg/kg) exacerbated the CS-induced cardiac electrical instability. Pretreatment with the selective delta opioid receptor antagonist, ICI 174,864 (0.5 mg/kg), completely abolished the changes in VFT produced by both DPDPE and DSLET. Previous administration of a nonselective peripherally acting opioid receptor antagonist, naloxone methiodide (5 mg/kg) also completely reversed the antifibrillatory action of DPDPE. Naloxone methiodide and ICI 174,864 alone had no effect on VFT. Pretreatment with the nonselective K(ATP) channel blocker, glibenclamide (0.3 mg/kg), or with the mitochondrial selective K(ATP) channel blocker, 5-hydroxydecanoic acid (5-HD, 5 mg/kg), completely abolished the DPDPE-induced increase in cardiac electrical stability. Glibenclamide and 5-HD alone had no effect on VFT. These results demonstrate that the delta opioid receptor plays an important role in the regulation of electrical stability in rats with post-infarction cardiosclerosis. We propose that peripheral delta(1) opioid receptor stimulation reverses CS-induced electrical instability via mitochondrial K(ATP) channels. On the contrary, delta(2) opioid receptor stimulation may exacerbate the CS-induced decrease in VFT. Further studies are necessary to determine the delta opioid receptor subtype which mediates the antifibrillatory effect of DPDPE and pro-fibrillatory effect of DSLET.  相似文献   
9.
It has been found that intravenous administration of nociceptin (0.4 mg/kg) prevents development of aconitine-induced arrhythmias but has no effect on the incidence of occlusion, reperfusion, CaCl2-induced arrhythmias, and exacerbates epinephrine-evoked dysrhythmias. Pretreatment with hexamethonium, atropine, guanethidine and naloxone did not abolish the arrhythmic effect of nociceptin. Intracerebroventricular infusion of orphanin FQ was shown to increase cardiac tolerance of arrhythmogenic influence of aconitine, but this effect is completely abolished by hexamethonium administration. It has been suggested that stimulation of both central and peripheral ORL1 receptors increases cardiac resistance against arrhythmogenic effect of aconitine via different mechanisms.  相似文献   
10.
Ischemic preconditioning (IPC) is thought to protect by activating survival kinases during reperfusion. We tested whether binding of adenosine receptors is also required during reperfusion and, if so, how long these receptors must be populated. Isolated rabbit hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. IPC reduced infarct size from 32.1 +/- 4.6% of the risk zone in control hearts to 7.3 +/- 3.6%. IPC protection was blocked by a 20-min pulse of the nonselective adenosine receptor blocker 8-(p-sulfophenyl)-theophylline when started either 5 min before or 10 min after the onset of reperfusion but not when started after 30 min of reperfusion. Protection was also blocked by either 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1-selective receptor antagonist, or MRS1754, an A2B-selective antagonist, but not by 8-(3-chlorostyryl)caffeine, an A2A-selective antagonist. Blockade of phosphatidylinositol 3-OH kinase (PI3K) with a 20-min pulse of wortmannin also aborted protection when started either 5 min before or 10 or 30 min after the onset of reperfusion but failed when started after 60 min of reflow. U-0126, an antagonist of MEK1/2 and therefore of ERK1/2, blocked protection when started 5 min before reperfusion but not when started after only 10 min of reperfusion. These studies reveal that A1 and/or A2B receptors initiate the protective signal transduction cascade during reperfusion. Although PI3K activity must continue long into the reperfusion phase, adenosine receptor occupancy is no longer needed by 30 min of reperfusion, and ERK activity is only required in the first few minutes of reperfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号