首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1977年   3篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
The temperature dependence of the oligomycin-sensitive ATPase (complex V) kinetic parameters has been investigated in enzyme preparations of different phospholipid composition. In submitochondrial particles, isolated complex V, and complex V reconstituted in dimirystoyl lecithin vesicles, the Arrhenius plots show discontinuities in the range 18–28°C, while no discontinuity is detected with dioleoyl lecithin recombinant. Van't Hoff plots ofK m also show breaks in the same temperature interval, with the exception of the dioleoylenzyme vesicles, whereK m is unchanged. Thermodynamic analysis of the ATPase reaction shows that DMPC-complex V has rather larger values of activation enthalpy and activation entropy below the transition temperature (24°C) than those of the other preparations, while all enzyme preparations show similar free energies of activation (14.3–18.5 kcal/mol). The results indicate that temperature and lipid composition influence to a different extent both kinetic and thermodynamic parameters of ATP hydrolysis catalyzed by the mitochondrial ATPase.  相似文献   
2.
3.
Abstract

The Westland petrel (Procellaria westlandica) is an endemic New Zealand species and one of the very few burrowing seabird species still breeding on mainland New Zealand. It nests only on a series of coastal ridgelines near to Punakaiki on the West Coast of the South Island. Between 2002 and 2005, surveys were undertaken at 28 of the 29 known colonies. The area occupied by the colonies was 73 ha; most colonies had fewer than 50 burrows, but six colonies had 201–500 burrows and four colonies had more than 1000 burrows. We find that the current breeding range of Westland petrel and the location of individual colonies are similar to those reported in both the 1950s and 1970s. Based on total burrow counts at 28 colonies and burrow occupancy rates determined by annual monitoring, the annual breeding population is estimated to be between 2954 and 5137 breeding pairs.  相似文献   
4.
Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.  相似文献   
5.
6.

Background

Patients with acute exacerbation of chronic obstructive pulmonary disease (COPD) commonly require hospitalization and admission to intensive care unit (ICU). It is useful to identify patients at the time of admission who are likely to have poor outcome. This study was carried out to define the predictors of mortality in patients with acute exacerbation of COPD and to device a scoring system using the baseline physiological variables for prognosticating these patients.

Methods

Eighty-two patients with acute respiratory failure secondary to COPD admitted to medical ICU over a one-year period were included. Clinical and demographic profile at the time of admission to ICU including APACHE II score and Glasgow coma scale were recorded at the time of admission to ICU. In addition, acid base disorders, renal functions, liver functions and serum albumin, were recorded at the time of presentation. Primary outcome measure was hospital mortality.

Results

Invasive ventilation was required in 69 patients (84.1%). Fifty-two patients survived to hospital discharge (63.4%). APACHE II score at the time of admission to ICU {odds ratio (95 % CI): 1.32 (1.138–1.532); p < 0.001} and serum albumin (done within 24 hours of admission) {odds ratio (95 % CI): 0.114 (0.03-0.432); p = 0.001}. An equation, constructed using the adjusted odds ratio for the two parameters, had an area under the ROC curve of 91.3%. For the choice of cut-off, sensitivity, specificity, positive and negative predictive value for predicting outcome was 90%, 86.5%, 79.4% and 93.7%.

Conclusion

APACHE II score at admission and SA levels with in 24 hrs after admission are independent predictors of mortality for patients with COPD admitted to ICU. The equation derived from these two parameters is useful for predicting outcome of these patients.  相似文献   
7.
Rhodamine 123 (RH-123) was used to monitor the membrane potential of mitochondria isolated from rat liver. Mitochondrial energization induces quenching of RH-123 fluorescence and the rate of fluorescence decay is proportional to the mitochondrial membrane potential. Exploiting the kinetics of RH-123 fluorescence quenching in the presence of succinate and ADP, when protons are both pumped out of the matrix driven by the respiratory chain complexes and allowed to diffuse back into the matrix through ATP synthase during ATP synthesis, we could obtain an overall quenching rate proportional to the steady-state membrane potential under state 3 condition. We measured the kinetics of fluorescence quenching by adding succinate and ADP in the absence and presence of oligomycin, which abolishes the ADP-driven potential decrease due to the back-flow of protons through the ATP synthase channel, F(0). As expected, the initial rate of quenching was significantly increased in the presence of oligomycin, and conversely preincubation with subsaturating concentrations of the uncoupler carbonyl cyanide p-trifluoro-metoxyphenilhydrazone (FCCP) induced a decreased rate of quenching. N,N'-dicyclohexylcarbodiimide (DCCD) behaved similarly to oligomycin in increasing the rate of quenching. These findings indicate that RH-123 fluorescence quenching kinetics give reliable and sensitive evaluation of mitochondrial membrane potential, complementing steady-state fluorescence measurements, and provide a mean to study proton flow from the mitochondrial intermembrane space to the matrix through the F(0) channel.  相似文献   
8.
It is now clear that mitochondrial defects are associated with a large variety of clinical phenotypes. This is the result of the mitochondria's central role in energy production, reactive oxygen species homeostasis, and cell death. These processes are interdependent and may occur under various stressing conditions, among which low oxygen levels (hypoxia) are certainly prominent. Cells exposed to hypoxia respond acutely with endogenous metabolites and proteins promptly regulating metabolic pathways, but if low oxygen levels are prolonged, cells activate adapting mechanisms, the master switch being the hypoxia-inducible factor 1 (HIF-1). Activation of this factor is strictly bound to the mitochondrial function, which in turn is related with the oxygen level. Therefore in hypoxia, mitochondria act as [O2] sensors, convey signals to HIF-1directly or indirectly, and contribute to the cell redox potential, ion homeostasis, and energy production. Although over the last two decades cellular responses to low oxygen tension have been studied extensively, mechanisms underlying these functions are still indefinite. Here we review current knowledge of the mitochondrial role in hypoxia, focusing mainly on their role in cellular energy and reactive oxygen species homeostasis in relation with HIF-1 stabilization. In addition, we address the involvement of HIF-1 and the inhibitor protein of F1F0 ATPase in the hypoxia-induced mitochondrial autophagy.  相似文献   
9.
Recent investigations by native gel electrophoresis showed the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis demonstrated that Complex I and Complex III in mammalian mitochondria kinetically behave as a single unit with control coefficients approaching unity for each component, suggesting the existence of substrate channeling within the super-complex. The formation of this supramolecular unit largely depends on the lipid content and composition of the inner mitochondrial membrane. The function of the super-complexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes, particularly Complex I, and in preventing excess oxygen radical formation. There is increasing evidence that disruption of the super-complex organization leads to functional derangements responsible for pathological changes, as we have found in K-ras-transformed fibroblasts.  相似文献   
10.
The aetiology of anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis has not been well defined. Here we review two factors which may play a role in the pathogenesis of the disease: genetics and infection. In particular, we discuss the role of autoantibodies to LAMP-2, which may arise following infection with Gram-negative bacteria, and may contribute to the development of ANCA-associated systemic vasculitis in genetically susceptible individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号