首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2012年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.

Background and aims

Phosphorus (P) is a commonly limiting nutrient for plant growth in natural environments. Many legumes capable of N2-fixation require more P than non-legumes do. Some legume crops can use sparingly soluble forms of P such as iron phosphate much better than other species, but reports on the ability of woody legumes to access iron phosphate are rare.

Methods

Plants of four Acacia species (Acacia stipuligera F. Muell., A. ancistrocarpa Maiden & Blakely, A. stellaticeps Kodela, Tindale & D. Keith and A. robeorum Maslin), native to the Great Sandy Desert in north-western Australia, were grown in a glasshouse in river sand with different levels of iron phosphate, between 0 and 16?μg P g?1 sand. Plant growth, tissue P concentrations, and pH and carboxylates in the rhizosphere were measured.

Results

Growth of A. stipuligera and A. ancistrocarpa was not responsive to increased P supply; in contrast, A. stellaticeps and A. robeorum produced significantly more root and shoot dry mass at 8 and 16?μg P g?1 sand than at 0?μg P g?1 sand; differences in root mass ratio were significant between species but not between P treatments. A. robeorum was the only species colonised by mycorrhizal fungi, and the colonisation percentage decreased with increasing P supply. In all species, P-uptake rates and tissue P concentrations were significantly higher at greater P supply. Rhizosphere pH and the amount of carboxylates in the rhizosphere decreased with increasing P supply.

Conclusions

Net P uptake increased with increasing P supply, showing that the present Acacia species can access P from iron phosphate. However, due to their inherently slow growth rate, enhanced P supply did not increase growth of two of the four studied species. The ability of the Acacia species to access P from iron phosphate is presumably related with carboxylate exudation and rhizosphere acidification.  相似文献   
3.

Aims and background

The ability to suppress soil nitrification through the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI). Earlier, we reported that sorghum roots release higher BNI-activity when grown with NH 4 + , but not with NO 3 - as N source. Also for BNI release, rhizosphere pH of <5.0 is needed; beyond this, a negative effect on BNI release was observed with nearly 80% loss of BNI activity at pH >7.0. This study is aimed at understanding the inter-functional relationships associated with NH 4 + uptake, rhizosphere-pH and plasma membrane H+-ATPase (PM H+-ATPase) activity in regulating the release of BNIs (biological nitrification inhibitors) from sorghum roots.

Methods

Sorghum was grown hydroponically and root exudates were collected from intact plants using a pH-stat system to separate the secondary acidification effects by NH 4 + uptake on BNIs release. A recombinant luminescent Nitrosomonas europaea bioassay was used to determine BNI-activity. Root plasma membrane was isolated using a two-phase partitioning system. Hydrolytic H+-ATPase activity was determined. Split-root system setup was deployed to understand the localized responses to NH 4 + , H+-ATPase-stimulator (fusicoccin) or H+-ATPase-inhibitor (vanadates) on BNI release by sorghum.

Results

Presence of NH 4 + in the rhizosphere stimulated the expression of H+-ATPase activity and enhanced the release of BNIs from sorghum roots. Fusicoccin, which stimulates H+-ATPase activity, also stimulated BNIs release in the absence of NH 4 + ; vanadate, which suppresses H+-ATPase activity, also suppressed the release of BNIs. NH 4 + levels (in rhizosphere) positively influenced BNIs release and root H+-ATPase activity in the concentration range of 0-1.0 mM, indicating a close relationship between BNI release and root H+-ATPase activity with a possible involvement of carrier-mediated transport for the release of BNIs in sorghum.

Conclusion

Our results suggest that NH 4 + uptake, PM H+-ATPase activity, and rhizosphere acidification are functionally inter-connected with BNI release in sorghum. Such knowledge is critical to gain insights into why BNI function is more effective in light-textured, mildly acidic soils compared to other soil types.  相似文献   
4.
Kumari  Archana  Goyal  Meenakshi  Kumar  Ravinder  Sohu  R. S. 《Protoplasma》2021,258(1):87-102

Shoot fly [Atherigona soccata (Rondani)] is a destructive pest of sorghum at the seedling stage and causes huge losses to grain yield and green fodder. The host-plant resistance mechanism is the best approach to reduce the attack of insects in plants. The damage parameters, morphophysiological traits, and biochemical metabolites had been investigated in the leaves and stem of contrasting sorghum genotypes, viz., resistant (IS18551, ICSV705, ICSV700), moderately resistant (PSC-4), and susceptible (SWARNA and SL-44) at 15 and 21 days after emergence (DAE) against shoot fly infestation. The resistant genotypes recorded lowest shoot fly oviposition and incidence (0.3–0.7 eggs plant−1 and 10–15%) than the susceptible genotypes (2.4–3.0 eggs plant−1 and 70–80%), respectively. The susceptible genotype SWARNA recorded 50% and 80% higher deadheart formation than the resistant genotype IS18551 at 15 and 21 DAE, respectively. Resistant genotypes exhibited higher trichome density at adaxial and abaxial part of leaf (118–145 and 106–131) with pink colored leaf sheath (scale 1.50–3.25), glossy leaves (scale1.00–1.25), and lower leaf surface wetness (scale1.25–2.00) compared with susceptible genotype with 49.3–73.3 and 25.3–64.0, scale 2.50–4.00, scale 2.75–3.50, and scale 3.25–4.25 for the respective parameters. Another defense response of sorghum toward the insect attack was modulation of plant metabolism. The infested genotypes responded to insect attack by upregulation of total soluble sugar, total phenol, prussic acid, and chlorophyll content by 1.2–2.1-fold, 1.5–2.0-fold, 1.2–1.3-fold, and 1.2–3.9-fold with more induction in susceptible genotypes at 21 DAE. On the whole, the present study indicates that morphophysiological and biochemical attributes contribute toward the resistance mechanism in sorghum against shoot fly infestation.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号