首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2024年   1篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2003年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
2.
Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree based classifier, sample points randomly and compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as ‘elbows’. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or existing bioinformatic tools.  相似文献   
3.
A pancreatic lipase was immobilized on readily available and inexpensive jute and eggshell matrices. The purity of extracted enzyme was confirmed by SDS-PAGE. The maximum protein load for eggshell was 10.23 mg/g, and for jute, it was 5.7 mg/g. The free enzyme activity retention was greater than 80% for eggshell and 43% for jute. The immobilized lipase was stable over a pH range from 7 to 8 for eggshell and 7.5 to 8.5 for jute with over a temperature range from 25 to 45 °C for eggshell and 37 to 40 °C for the jute. FTIR data indicated new bonds on the jute upon immobilization. Although no new bond was observed, immobilization data on eggshell fit well with the Langmuir adsorption isotherm model. The model constants, Γmax and Kl, were 13.92 mg/g and 0.382 mL/mg, respectively. Mixed adsorption with both ionic and hydrophobic interactions was observed. Lipase adsorption was reduced significantly in presence of Tween 80, whereas the effect was less in case of ionic strength, pH and temperature. For both matrices, scanning electron microscopy (SEM) was used to demonstrate the changes in surface morphology after immobilization. The performance of eggshell was better than that of jute as a matrix for immobilizing pancreatic lipase.  相似文献   
4.
5.
6.
Beyond the critical role of cell nuclei in gene expression and DNA replication, they also have a significant influence on cell mechanosensation and migration. Nuclear stiffness can impact force transmission and, furthermore, act as a physical barrier to translocation across tight spaces. As such, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study, we present a computational investigation of the in situ deformation of a heterogeneous chondrocyte nucleus. A methodology is developed to accurately reconstruct a three-dimensional finite-element model of a cell nucleus from confocal microscopy. By incorporating the reconstructed nucleus into a chondrocyte model embedded in pericellular and extracellular matrix, we explore the relationship between spatially heterogeneous nuclear DNA content, shear stiffness, and resultant shear strain. We simulate an externally applied extracellular matrix shear deformation and compute intranuclear strain distributions, which are directly compared with corresponding experimentally measured distributions. Simulations suggest that the mechanical behavior of the nucleus is highly heterogeneous, with a nonlinear relationship between experimentally measured grayscale values and corresponding local shear moduli (μn). Three distinct phases are identified within the nucleus: a low-stiffness mRNA-rich interchromatin phase (0.17 kPa ≤ μn ≤ 0.63 kPa), an intermediate-stiffness euchromatin phase (1.48 kPa ≤ μn ≤ 2.7 kPa), and a high-stiffness heterochromatin phase (3.58 kPa ≤ μn ≤ 4.0 kPa). Our simulations also indicate that disruption of the nuclear envelope associated with lamin A/C depletion significantly increases nuclear strain in regions of low DNA concentration. We further investigate a phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, by increasing the contractility of the actin cytoskeleton to a level associated with fibroblasts. Peak nucleus strains increase by 35% compared to control, with the nucleus becoming more ellipsoidal. Our findings may have broad implications for current understanding of how local DNA concentrations and associated strain amplification can impact cell mechanotransduction and drive cell behavior in development, migration, and tumorigenesis.  相似文献   
7.

Background

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.

Results

We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors.

Conclusions

Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1049) contains supplementary material, which is available to authorized users.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号