首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.  相似文献   
2.
PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic activities of PHA synthase enzymes.  相似文献   
3.
The effect of neurosteroids is mediated through their membrane or nuclear receptors. However, no dehydroepiandrosterone (DHEA)-specific receptors have been evidenced so far in the brain. In this paper, we showed by isothermal titration calorimetry that the DHEA specifically binds to the dendritic brain microtubule-associated protein MAP2C with an association constant of 2.7 x 10(7) m-1 and at a molar ratio of 1:1. By partial tryptic digestions and mass spectrometry analysis, we found that the binding involved the N-terminal region of MAP2C. Interestingly, MAP2C displays homologies with 17 beta-hydroxysteroid dehydrogenase 1, an enzyme required for estrogen synthesis. Based on these sequence homologies and on the x-ray structure of the DHEA-binding pocket of 17 beta-hydroxysteroid dehydrogenase 1, we modeled the complex of DHEA with MAP2C. The binding of DHEA to MAP2C involved specific hydrogen bonds that orient the steroid into the pocket. This work suggests that DHEA can directly influence brain plasticity via MAP2C binding. It opens interesting ways for understanding the role of DHEA in the brain.  相似文献   
4.
5.
Caveolin-1 has been implicated in apical transport of glycosylphosphatidylinositol (GPI)-anchored proteins and influenza virus hemagglutinin (HA). Here we have studied the role of caveolin-1 in apical membrane transport by generating caveolin-1-deficient Madin-Darby canine kidney (MDCK) cells using retrovirus-mediated RNA interference. The caveolin-1 knockdown (cav1-KD) MDCK cells were devoid of caveolae. In addition, caveolin-2 was retained in the Golgi apparatus in cav1-KD MDCK cells. However, we found no significant alterations in the apical transport kinetics of GPI-anchored proteins or HA upon depletion of caveolin-1. Similar results were obtained using embryonic fibroblasts from caveolin-1-knockout mice. Thus, we conclude that caveolin-1 does not play a major role in lipid raft-mediated biosynthetic membrane trafficking.  相似文献   
6.
In order to understand the functioning of apical meristems in Arabidopsis more clearly, a new mutant, mgoun3 (mgo3), affected in the structural organization and the functional regulation of both shoot and root meristems has been isolated. mgo3 plants display perturbations in leaf morphogenesis, in the spatial and the temporal formation of primordia, and frequent fasciation of the inflorescence stem. Cellular analysis showed that both cellular organization and cell identity patterning are impaired in the mutant meristems. The MGO3 gene has been isolated by positional cloning. The protein deduced from the cDNA sequence contains TetratricoPeptide Repeats (TPR) and Leucine-Rich Repeats (LRR), two motifs that are thought to act in protein-protein interactions. This gene appears to be unique in the Arabidopsis genome. Although the MGO3 protein presents TPR as in the Arabidopsis proteins HOBBIT and SPINDLY, the MGO3 motifs are more similar to those present in LGN-related proteins, which are regulators for some of the asymmetric cell divisions in animal development. These features suggest a key role for MGO3 in meristematic cell divisions and would be of interest for the comparison between plant and animal development.  相似文献   
7.
The properties of cholesterol-dependent domains (lipid rafts) in cell membranes have been controversial. Because integrin-mediated cell adhesion and caveolin both regulate trafficking of raft components, we investigated the effects of adhesion and caveolin on membrane order. The fluorescent probe Laurdan and two-photon microscopy revealed that focal adhesions are highly ordered; in fact, they are more ordered than caveolae or domains that stain with cholera toxin subunit B (CtxB). Membrane order at focal adhesion depends partly on phosphorylation of caveolin1 at Tyr14, which localizes to focal adhesions. Detachment of cells from the substratum triggers a rapid, caveolin-independent decrease in membrane order, followed by a slower, caveolin-dependent decrease that correlates with internalization of CtxB-stained domains. Endocytosed CtxB domains also become more fluid. Thus, membrane order is highly dependent on caveolae and focal adhesions. These results show that lipid raft properties are conferred by assembly of specific protein complexes. The ordered state within focal adhesions may have important consequences for signaling at these sites.  相似文献   
8.
The MGOUN3(MGO3)/BRUSHY1(BRU1)/TONSOKU(TSK) gene of Arabidopsis thaliana encodes a nuclear leucine-glycine-asparagine (LGN) domain protein that may be implicated in chromatin dynamics and genome maintenance. Mutants with defects in MGO3 display a fasciated stem and disorganized meristem structures. The transition to flowering was examined in mgo3 mutants and it was found that, under short days, the mutants flowered significantly earlier than the wild-type plants. Study of flowering-time associated gene expression showed that the floral transition inhibitor gene FLC was under-expressed in the mutant background. Ectopic expression of the flower-specific genes AGAMOUS (AG), PISTILLATA (PI), and SEPALLATA3 (SEP3) in mgo3 vegetative organs was also detected. Western blot and chromatin immunoprecipitation experiments suggested that histone H3 acetylation may be altered in the mgo3 background. Together, these data suggest that MGO3 is required for the correct transition to flowering and that this may be mediated by histone acetylation and associated changes in FLC expression.  相似文献   
9.
Microtubule dynamic instability is tightly regulated by coordinated action of stabilizing and destabilizing microtubule associated proteins. Among the stabilizing proteins, tau plays a pivotal role in both physiological and pathological processes. Nevertheless, the detailed mechanism of tau-tubulin interaction is still subject to controversy. In this report, we studied for the first time tau binding to tubulin by a direct thermodynamic method in the absence of any tubulin polymerization cofactors that could influence this process. Isothermal titration calorimetry enabled us to evidence two types of tau-tubulin binding modes: one corresponding to a high affinity binding site with a tau:tubulin stoichiometry of 0.2 and the other one to a low affinity binding site with a stoichiometry of 0.8. The same stoichiometries were obtained at all temperatures tested (10-37°C), indicating that the mechanism of interaction does not depend on the type of tubulin polymer triggered upon tau binding. These findings allowed us to get new insights into the topology of tau on microtubules.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号