首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  2021年   1篇
  2018年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
2.
The present study reports on the effects of dopamine on sodium transepithelial transport and Na+,K+-ATPase activity in Caco-2 cells, a human epithelial intestinal cell line which undergoes enterocyte differentiation in culture, and jejunal epithelial cells from 20 day old Wistar rats. Addition of amphotericin B to the mucosal side stimulated Isc in a concentration dependent manner (Caco-2 cells, EC50=0.9 [0.5, 1.7] microM; rat jejunum, EC50=7.4 [0.8; 70.1] microM). The presence of 1 microM dopamine did not change the effect of amphotericin B in Caco-2 cells, but produced a significant (P<0.05) decrease in the maximal effect of amphotericin B in the rat jejunum. Dopamine (1 microM), added to the serosal side, did not change the Isc profile in Caco-2 cells, but produced a significant increase in the rat jejunum. This effect was antagonized by SKF 83566 (1 microM), but not S-sulpiride (1 microM), and was mimicked by SKF 38393 (10 nM), but not by quinerolane (10 nM). Basal Na+,K+-ATPase activity (in nmol Pi mg protein(-1) min(-1)) in Caco-2 cells (49.5+/-0.2) was similar to that observed in isolated rat jejunal epithelial cells (52.3+/-3.4). Dopamine (1 microM) significantly (P<0.05) decreased Na+,K+-ATPase activity in rat jejunal epithelial cells, but failed to inhibit Na+,K+-ATPase in Caco-2 cells. This effect of dopamine was antagonized by SKF 83566 (1 microM), but not S-sulpiride (1 microM), and was mimicked by SKF 38393 (10 nM), but not by quinerolane (10 nM). The specific binding of [3H]-Sch 23390 to the rat intestinal mucosa was saturable with an apparent dissociation constant (KD) of 2.4 (0.4; 4.5) nM and maximum receptor density of 259.8+/-32.6 fmol/mg protein. No significant specific binding of [3H]-Sch 23390 was observed in membranes from Caco-2 cells. In conclusion, the results obtained show that D1-like receptor mediated effects of dopamine in the rat jejunum on sodium absorption are absent in Caco-2 cells, most probably because this cell line does not express D1-like dopamine receptors, which ultimately are responsible for the inhibitory effect of the amine upon intestinal Na+,K+-ATPase.  相似文献   
3.
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.  相似文献   
4.
The haemocytes in bivalve mussels are involved in many processes such as lesion repair, shell repair, elimination of small particles and toxic substances. In Anodonta cygnea there are two categories of haemolymph cells, the granulocytes and hyalinocytes. Two groups of cells were identified by flow cytometry and morphological studies: one with larger size and granularity representing 75%, and another group of cells (25%) which were approximately half the size. The cytochemical reactions showed peroxidase activity in the larger cells and a weak prophenoloxidase activity in the smaller cells. These characteristics suggest that the most common haemocytes are granulocytes and hyalinocytes are less common. Enzymatic studies showed clear activities of few enzymes in different compartments of the mantle. Both haemocytes presented significant variations for alpha-manosidase and beta-glucurosidase activities depending on the acid or alkaline pH. Almost all were sensitive to the pH changes, mainly the beta-galactosidase in the haemolymph plasma. On the contrary, the same enzymatic analysis in the extrapallial elements showed more stabilised activities. The simulation of acidic and alkaline condition with the observation of significant morphological and enzymatic activity changes, allow us to speculate some functional role, mainly in the haemolymph elements. The granulocytes may be speculated to have intense involvement in the digestion of small residues with the formation of calcareous stores while the hyalinocytes are more responsible for the elimination of soluble cytotoxic compounds.  相似文献   
5.
We examined the nature and regulation of the inward L-3,4-dihydroxyphenylalanine (L-DOPA) transporter in rat capillary cerebral endothelial (RBE4) cells, type 1 astrocytes (DI TNC1), and Neuro-2a neuroblastoma cells. In all three cell types, the inward transfer of L-DOPA was largely promoted through the 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid-sensitive and sodium-independent L-type amino acid transporter. Only in DI TNC1 cells was the effect of maneuvers that increase intracellular cAMP levels accompanied by increases in L-DOPA uptake. Also, only in DI TNC1 cells was the effect of the guanylyl cyclase inhibitor LY-83583 accompanied by a 65% increase in L-DOPA accumulation, whereas the nitric oxide donor sodium nitroprusside produced a 25% decrease in L-DOPA accumulation. In all three cell types, the Ca2+/calmodulin inhibitors calmidazolium and trifluoperazine inhibited L-DOPA uptake in a noncompetitive manner. Thapsigargin (1 and 3 microM) and A-23187 (1 and 3 microM) failed to alter L-DOPA accumulation in RBE4 and Neuro-2a cells but markedly increased L-DOPA uptake in DI TNC1 cells. We concluded that L-DOPA in RBE4, DI TNC1, and Neuro-2a cells is transported through the L-type amino acid transporter and appears to be under the control of Ca2+/calmodulin-mediated pathways. Astrocytes, however, are endowed with other processes that appear to regulate the accumulation of L-DOPA, responding positively to increases in intracellular Ca2+ and cAMP and to decreases in cGMP.  相似文献   
6.
7.
8.
Na+/K+-ATPase plays a key role in the transport of Na+ throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na+ and K+ ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na+/K+-ATPase activity and K+ conductance were evaluated using electrophysiological methods. Na+K+-ATPase α1– and β1-subunit expression was quantified by Western blot techniques. Na+/H+ exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na+ transport, which results from an increase in the number of Na+/K+-ATPase α1- and β1-subunits, in the membrane. Increases in Na+/K+-ATPase activity were accompanied by increases in K+ conductance as a result of functional coupling between Na+/K+-ATPase and basolateral K+ channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na+/H+ exchanger activity were observed. H2O2 production was increased in aged cells, but exposure for 5 days to 1 and 10 μM of H2O2 had no effect on Na+/K+-ATPase expression. Ouabain (100 nM) increased α1-subunit, but not β1-subunit, Na+/K+-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.  相似文献   
9.
Objective To test the hypothesis that the identification of mutation in the carboxypeptidase E (CPE) gene which leads to marked hyperproinsulinaemia is consistent with a possible role for mutations in CPE in the development of coronary heart disease. Methods The study subjects consisted of 51 consecutive patients (34 males and 17 females) who will undergo coronary angiography for suspected or known coronary atherosclerosis. Coronary heart disease (CHD) was defined as having a luminal diameter stenosis ≥50% in at least one of three major coronary arteries by coronary angiography or based on the Rose Questionnaire. The insulin and proinsulin level were measured using highly sensitive two-site sandwich ELISA methods. Screening for mutations of the eight exons of the CPE gene was performed by polymerase chain reaction followed by bidirectional sequencing. Results We scanned eight exons and exon–intron junctional region. Overall, we found 12 distinct variants in the intron region and three variants in the exon region. Among the 15 variants, 10 mutations were rare. The further explored study reveal that the above five non-rare variants would not affect the level of glucose, insulin, and proinsulin. However, the results suggest that the prevalence of the coronary heart disease was significant difference between the wild type group and mutant type group according to the A4545G (P = 0.020). The results from the logistic regression reveal that the subjects with the CPE mutation of A4545G, the odds ratio for the coronary heart disease was 0.196 (95% CI: 0.046 to 0.830, P = 0.027). Conclusions In the present study, the mutation of CPE gene would not affect the level of glucose, insulin, and proinsulin. The hypothesis of a possible role for mutations in CPE in the development of coronary heart disease needs further study.  相似文献   
10.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号