首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   16篇
  126篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   9篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有126条查询结果,搜索用时 0 毫秒
1.
The stimulation of the Hill reaction in CO2-depleted broken chloroplasts (Pisum sativum L. cv Rondo) by the total amount of dissolved CO2 and HCO3 (bicarbonate*) was measured at several formate concentrations. Formate appears to be a competitive inhibitor of the bicarbonate* stimulation of electron flow. From these experiments we have obtained a reactivation constant (Kr) of 78 ± 31 micromolar NaHCO3 and an inhibition constant (Ki) of 2.0 ± 0.7 millimolar HCOONa at pH 6.5. In the absence of formate, significant electron flow was measured at a bicarbonate* concentration well below Kr, suggesting that electron flow from Q, the primary electron acceptor of photosystem II, to plastoquinone can proceed when no bicarbonate* is bound to the regulatory site at the QB-protein. If so, bicarbonate* stimulation of electron flow is mainly a diminution of the inhibition of electron flow by formate. In view of the results, it is proposed that regulation of linear electron flow by bicarbonate* and formate is a mechanism that could link cell metabolism to photosynthetic electron flow.  相似文献   
2.
Summary Lycopersicon pennellii shoots, cultured in vitro for more than a year (type I plants) produced few viable protoplasts in contrast to shoots cultured in vitro for less than five months (type II plants). Ethylene production of both plant types was compared. The low viability of plant type I protoplasts could be correlated with high ethylene production and an increased cell sap osmolality. The ethylene action inhibitor silver thiosulphate improved protoplast yield and viability, especially when using donor tissue, germinated and cultured on medium containing silver thiosulphate (type III plants). Moreover, the choice of cell wall degrading enzymes influenced protoplast viability, since ethylene release was significantly lower using Cellulase R 10 than Cellulysin. All improvements together resulted in an efficient protocol for the isolation and regeneration of Lycopersicon pennellii protoplasts.Abbrevations ACC 1-Aminocyclopropane-1-carboxylic acid - FW Fresh Weight - Mes -Morpholino ethane sulphonic acid - NMU N-Nitroso-N-Methyl-Urea - PE Plating Efficiency = Number of calli / number of protoplasts x 100% - Pps protoplasts - STS Silver thiosulfate  相似文献   
3.
4.
The gene composition of present-day genomes has been shaped by a complicated evolutionary history, resulting in diverse distributions of genes across genomes. The pattern of presence and absence of a gene in different genomes is called its phylogenetic profile. It has been shown that proteins whose encoding genes have highly similar profiles tend to be functionally related: As these genes were gained and lost together, their encoded proteins can probably only perform their full function if both are present. However, a large proportion of genes encoding interacting proteins do not have matching profiles. In this study, we analysed one possible reason for this, namely that phylogenetic profiles can be affected by multi-functional proteins such as shared subunits of two or more protein complexes. We found that by considering triplets of proteins, of which one protein is multi-functional, a large fraction of disturbed co-occurrence patterns can be explained.  相似文献   
5.
Genomic data provide invaluable, yet unreliable information about protein function. However, if the overlap in information among various genomic datasets is taken into account, one observes an increase in the reliability of the protein-function predictions that can be made. Recently published approaches achieved this either by comparing the same type of data from multiple species (horizontal comparative genomics) or by using subtle, Bayesian methods to compare different types of genomic data from a single species (vertical comparative genomics). In this article, we discuss these methods, illustrating horizontal comparative genomics by comparing yeast two-hybrid (Y2H) data from Saccharomyces cerevisiae with Y2H data from Drosophila melanogaster, and illustrating vertical comparative genomics by comparing RNA expression data with proteomic data from Plasmodium falciparum.  相似文献   
6.
Comparisons of the gene order in closely related genomes reveal a major role for inversions in the genome shuffling process. In contrast to prokaryotes, where the inversions are predominantly large, half of the inversions between Saccharomyces cerevisiae and Candida albicans appear to be small, often encompassing only a single gene. Overall the genome rearrangement rate appears higher in eukaryotes than in prokaryotes, and the current genome data do not indicate that functional constraints on the co-expression of neighboring genes have a large role in conserving eukaryotic gene order. Nevertheless, qualitatively interesting examples of conservation of gene order in eukaryotes can be observed.  相似文献   
7.
We used atomic force microscopy (AFM) to study the lateral organization of transmembrane TmAW(2)(LA)(n)W(2)Etn peptides (WALP peptides) incorporated in phospholipid bilayers. These well-studied model peptides consist of a hydrophobic alanine-leucine stretch of variable length, flanked on each side by two tryptophans. They were incorporated in saturated phosphatidylcholine (PC) vesicles, which were deposited on a solid substrate via the vesicle fusion method, yielding hydrated gel-state supported bilayers. At low concentrations (1 mol %) WALP peptides induced primarily line-type depressions in the bilayer. In addition, striated lateral domains were observed, which increased in amount and size (from 25 nm up to 10 microm) upon increasing peptide concentration. At high peptide concentration (10 mol %), the bilayer consisted mainly of striated domains. The striated domains consist of line-type depressions and elevations with a repeat distance of 8 nm, which form an extremely ordered, predominantly hexagonal pattern. Overall, this pattern was independent of the length of the peptides (19-27 amino acids) and the length of the lipid acyl chains (16-18 carbon atoms). The striated domains could be pushed down reversibly by the AFM tip and are thermodynamically stable. This is the first direct visualization of alpha-helical transmembrane peptide-lipid domains in a bilayer. We propose that these striated domains consist of arrays of WALP peptides and fluidlike PC molecules, which appear as low lines. The presence of the peptides perturbs the bilayer organization, resulting in a decrease in the tilt of the lipids between the peptide arrays. These lipids therefore appear as high lines.  相似文献   
8.
Biomolecular interactions measured by atomic force microscopy   总被引:11,自引:0,他引:11       下载免费PDF全文
Atomic force microscopy (AFM) is nowadays frequently applied to determine interaction forces between biological molecules. Starting with the detection of the first discrete unbinding forces between ligands and receptors by AFM only several years ago, measurements have become more and more quantitative. At the same time, theories have been developed to describe and understand the dynamics of the unbinding process and experimental techniques have been refined to verify this theory. In addition, the detection of molecular recognition forces has been exploited to map and image the location of binding sites. In this review we discuss the important contributions that have led to the development of this field. In addition, we emphasize the potential of chemically well-defined surface modification techniques to further improve reproducible measurements by AFM. This increased reproducibility will pave the way for a better understanding of molecular interactions in cell biology.  相似文献   
9.
Effects of the herbicide linuron on photosynthesis of the freshwater macrophytes Elodea nuttallii (Planchon) St. John, Myriophyllum spicatum L., Potamogeton crispus L., Ranunculus circinatus Sibth., Ceratophyllum demersum L. and Chara globularis (Thuill.), and of the alga Scenedesmus acutus Meyen, were assessed by measuring the efficiency of photosystem II electron flow using chlorophyll fluorescence. In a series of single-species laboratory tests several plant species were exposed to linuron at concentrations ranging from 0 to 1000 μg l−1. It was found that the primary effect of linuron, inhibition of photosystem II electron flow, occurred with a half-lifetime of about 0.1 to 1.9 h after addition of linuron to the growth medium. The direct effect of the herbicide on photosynthesis appeared to be reversible. Complete recovery from the inhibition occurred with a half-lifetime of 0.5 to 1.8 h after transfer of linuron treated plants to linuron free medium. The EC50,24h of the inhibition of photosystem II electron transport by linuron was about 9–13 μg l−1 for most of the macrophytes tested. For S. acutus the EC50,72h for inhibition of photosystem II electron flow was about 17 μg l−1 for the free suspension, and 22 μg l−1 for cells encapsulated in alginate beads. In a long-term indoor microcosm experiment, the photosystem II electron flow of the macrophytes E. nuttallii, C. demersum and the alga Spirogyra sp. was determined during 4 weeks of chronic exposure to linuron. The EC50,4weeks for the long-term exposure was 8.3, 8.7 and 25.1 μg l−1 for E. nuttallii, C. demersum and Spirogyra, respectively. These results are very similar to those calculated for the acute effects. The relative biomass increase of E. nuttallii in the microcosms was determined during 3 weeks of chronic exposure and was related to the efficiency of photosystem II electron transport as assessed in the different treatments. It is concluded that effects of the photosynthesis inhibiting herbicide on aquatic macrophytes, algae and algae encapsulated in alginate beads can be conveniently evaluated by measuring photosystem II electron transport by means of chlorophyll fluorescence. This method can be used as a rapid and non-destructive technique in aquatic ecological research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
10.
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号