首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   5篇
  2021年   2篇
  2018年   3篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   11篇
  2004年   6篇
  2003年   2篇
  2002年   6篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
A modification of the second-order model for biodegradation was derived, applied to an example data set, and shown to be superior for describing the anaerobic biodegradation of p-cresol by an enriched bacterial consortium. The modified model circumvents the no-growth assumption implicit in the use of the second-order rate equation, but still requires the assumption of first-order kinetics over the course of substrate depletion. Violation of the no-growth assumption is particularly important since overestimates of the pseudo-first-order rate coefficient lead to underestimates of the time required for the removal of a xenobiotic chemical from a contaminated environment. Our calculations show that the errors introduced into the pseudo-first-order rate coefficient (and the resulting estimates of the second-order rate coefficient) approach 100% if one doubling occurs in activity over the course of substrate depletion. For an exemplary data set, use of a first-order model resulted in a 100% overestimate of the first-order decay coefficient, which would in turn lead to a corresponding overestimate of the second-order rate coefficient. The modified model we describe is a potential alternative to the pseudo-first-order model for the routine estimation of second-order rate coefficients.  相似文献   
2.
The efficiency of Mycophenolate mofetil (MMF) and Azathioprine (AZA) as immunosuppressive agents depends on the activity of 2 enzymes, inosine monophosphate dehydrogenase (IMPDH) and thiopurine methyltransferase (TPMT) respectively. We present preliminary evaluation of nonradioactive methods that apply HPLC with ion-trap mass detection to measure the activities of IMPDH in peripheral blood mononuclear cells (PBMC) and TPMT in the erythrocytes (RBC). We found IMPDH activity of 0.9 ± 0.2 nmol/hour/106 PBMC and TPMT activity of 19.9 ± 4.7 nmol/hour/ml RBC in healthy subjects. These methods, following its further validation, could be useful for monitoring the activity in a clinical and experimental setting.  相似文献   
3.
Following discovery of NAD+-dependent reactions that control gene expression, cytoprotection, and longevity, there has been a renewed therapeutic interest in precursors, such as nicotinamide and its derivatives. We tested 20 analogues of nicotinamide for their ability to protect endothelial cells from peroxynitrite stress and their effect on poly (ADP-ribose) polymerase (PARP) activity. Several nicotinamide derivatives protected endothelial cells from peroxynitrite-induced depletion of cellular NAD+ and ATP concentrations, but only some of these compounds inhibited PARP. We conclude that some nicotinamide derivatives provide protection of endothelial cells against peroxynitrite-induced injury independent of inhibition of PARP activity. Preservation of the NAD+ pool was a common effect of these compounds.  相似文献   
4.
Abstract Dissolved hydrogen was measured in the bovine rumen using an in situ hydrogen probe coupled to a mercury reduction detector. The probe can quantitate dissolved hydrogen from low nM concentrations to saturation. In the rumen of steers fed every 3 h, basal hydrogen concentrations averaged 1.38 μ M ± 0.26, and the basal level remained stable throughout an 18–25 h period. In contrast, a steer fed once a day had a basal hydrogen concentration of 1.40 μM, but the level was not stable between feedings. For the steers fed every 3 h, the reticulum displayed the most dramatic fluctuations in the hydrogen concentration after the feeding event. Hydrogen spikes (10–20 μM) in the reticulum were detected 2 min after feed ingestion, and lasted for 30 min. In the center of the rumen the feeding response was observed 30 min after feeding and typically lasted 1 h. The magnitude of hydrogen spikes in the center of the rumen was reduced in comparison to the reticulum. The magnitude of the hydrogen spikes indicates that feeding steers as frequently as eight times a day does not establish a steady-state with respect to hydrogen concentration. However, frequent feedings do minimize drift from the basal hydrogen level. Assuming Michaelis-Menten kinetics our data predict that methane production from hydrogen proceeds at 22% of its maximal velocity.  相似文献   
5.
6.
Phylogenetic relationships among cheilodactylid and latrid fishes were estimated from cytochrome oxidase I and cytochrome b mitochondrial DNA sequences. Two South African cheilodactylids, Cheilodactylus fasciatus and Cheilodactylus pixi, were divergent from the remaining members of their genus and family, and the monophyly of these groups was rejected based on parametric bootstrap analysis. As C. fasciatus is the nominal species for the genus and family, widespread taxonomic reassignment is implicated for the remaining 12 and 17 members of these groups, respectively. As these 17 cheilodactylids are not genetically or morphologically distinct from the latrids, it is proposed that the Latridae should be expanded to encompass them. The inferred relationships among those Cheilodactylus requiring generic reassignment were largely unresolved, and hence few recommendations can be made regarding their placement. Divergence time estimates indicate that chance oceanic dispersal subsequent to Gondwanan fragmentation best explains the Southern Hemisphere radiation of cheilodactylids.  相似文献   
7.
In this study, we examined the roleof insulin in the control of vascular smooth muscle cell (VSMC)migration in the normal vasculature. Platelet-derived growth factor(PDGF) increased VSMC migration, which was inhibited by pretreatmentwith insulin in a dose-dependent manner. Insulin also caused a 60%decrease in PDGF-stimulated mitogen-activated protein kinase (MAPK)phosphorylation and activation. Insulin inhibition of MAPK wasaccompanied by a rapid induction of MAPK phosphatase (MKP-1), whichinactivates MAPKs by dephosphorylation. Pretreatment with inhibitors ofthe nitric oxide (NO)/cGMP pathway, blocked insulin-induced MKP-1 expression and restored PDGF-stimulated MAPK activation and migration. In contrast, adenoviral infection of VSMCs with MKP-1 or cGMP-dependent protein kinase I (cGK I), the downstream effector of cGMPsignaling, blocked the activation of MAPK and prevented PDGF-directedVSMC migration. Expression of antisense MKP-1 RNA prevented insulin's inhibitory effect and restored PDGF-directed VSMC migration and MAPKphosphorylation. We conclude that insulin inhibition of VSMC migrationmay be mediated in part by NO/cGMP/cGK I induction of MKP-1 andconsequent inactivation of MAPKs.

  相似文献   
8.
cGMP- and cAMP-dependent protein kinases (cGK I, cGK II, and cAK) are important mediators of many signaling pathways that increase cyclic nucleotide concentrations and ultimately phosphorylation of substrates vital to cellular functions. Here we demonstrate a novel mRNA splice isoform of cGK II arising from alternative 5' splicing within exon 11. The novel splice variant encodes a protein (cGK II Delta(441-469)) lacking 29 amino acids of the cGK II Mg-ATP-binding/catalytic domain, including the conserved glycine-rich loop consensus motif Gly-x-Gly-x-x-Gly-x-Val which interacts with ATP in the protein kinase family of enzymes. cGK II Delta(441-469) has no intrinsic enzymatic activity itself, however, it antagonizes cGK II and cGK I, but not cAK. Thus, the activation and cellular functions of cGK II may be determined not only by intracellular cGMP levels but also by alternative splicing which may regulate the balance of expression of cGK II versus its own inhibitor, cGK II Delta(441-469).  相似文献   
9.
Recently, we have shown that erythrocytes obtained from patients with chronic renal failure (CRF) exhibited an increased rate of ATP formation from adenine as a substrate. Thus, we concluded that this process was in part responsible for the increase of adenine nucleotide concentration in uremic erythrocytes. There cannot be excluded however, that a decreased rate of adenylate degradation is an additional mechanism responsible for the elevated ATP concentration. To test this hypothesis, in this paper we compared the rate of adenine nucleotide breakdown in the erythrocytes obtained from patients with CRF and from healthy subjects.Using HPLC technique, we evaluated: (1) hypoxanthine production by uremic RBC incubated in incubation medium: (a) pH 7.4 containing 1.2 mM phosphate (which mimics physiological conditions) and (b) pH 7.1 containing 2.4 mM phosphate (which mimics uremic conditions); (2) adenine nucleotide degradation (IMP, inosine, adenosine, hypoxanthine production) by uremic RBC incubated in the presence of iodoacetate (glycolysis inhibitor) and EHNA (adenosine deaminase inhibitor). The erythrocytes of healthy volunteers served as control.The obtained results indicate that adenine nucleotide catabolism measured as a hypoxanthine formation was much faster in erythrocytes of patients with CRF than in the cells of healthy subjects. This phenomenon was observed both in the erythrocytes incubated at pH 7.4 in the medium containing 1.2 mM inorganic phosphate and in the medium which mimics hyperphosphatemia (2.4 mM) and metabolic acidosis (pH 7.1). The experiments with EHNA indicated that adenine nucleotide degradation proceeded via AMP-IMP-Inosine-Hypoxanthine pathway in erythrocytes of both patients with CRF and healthy subjects. Iodoacetate caused a several fold stimulation of adenylate breakdown. Under these conditions: (a) the rate of AMP catabolites (IMP + inosine + adenosine + hypoxanthine) formation was substantially higher in the erythrocytes from patients with CRF; (b) in erythrocytes of healthy subjects degradation of AMP proceeded via IMP and via adenosine essentially at the same rate; (c) in erythrocytes of patients with CRF the rate of AMP degradation via IMP was about 2 fold greater than via adenosine.The results presented in this paper suggest that adenine nucleotide degradation is markedly accelerated in erythrocytes of patients with CRF.  相似文献   
10.
Endothelial nitric-oxide synthase (NOS-III) is defined as being strictly dependent on Ca(2+)/calmodulin (CaM) for activity, although NO release from endothelial cells has been reported to also occur at intracellular free Ca(2+) levels that are substimulatory for the purified enzyme. We demonstrate here that NOS-III, but neither NOS-I nor -II, is rapidly and strongly activated and phosphorylated on both Ser and Thr in the presence of cGMP-dependent protein kinase II (cGK II) and the catalytic subunit of cAMP-dependent protein kinase (cAK) in vitro. Phosphopeptide analysis by mass spectrometry identified Ser(1177), as well as Ser(633) which is situated in a recently defined CaM autoinhibitory domain within the flavin-binding region of human NOS-III. Phosphoamino acid analysis identified a putative phosphorylation site at Thr(495) in the CaM-binding domain. Importantly, both cAK and cGK phosphorylation of NOS-III in vitro caused a highly reproducible partial (10-20%) NOS-III activation which was independent of Ca(2+)/CaM, and as much as a 4-fold increase in V(max) in the presence of Ca(2+)/CaM. cAK stimulation in intact endothelial cells also increased both Ca(2+/)CaM-independent and -dependent activation of NOS-III. These data collectively provide new evidence for cAK and cGK stimulation of both Ca(2+)/CaM-independent and -dependent NOS-III activity, and suggest possible cross-talk between the NO and prostaglandin I(2) pathways and a positive feedback mechanism for NO/cGMP signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号