首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   762篇
  免费   27篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   10篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   20篇
  2015年   36篇
  2014年   31篇
  2013年   57篇
  2012年   68篇
  2011年   68篇
  2010年   37篇
  2009年   42篇
  2008年   45篇
  2007年   44篇
  2006年   42篇
  2005年   33篇
  2004年   31篇
  2003年   21篇
  2002年   26篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1996年   4篇
  1995年   4篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   7篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   8篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1966年   3篇
  1937年   1篇
排序方式: 共有789条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
5.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   
6.
R Manohar  A G Rao  N A Rao 《Biochemistry》1984,23(18):4116-4122
The kinetic mechanism for the interaction of D-cycloserine with serine hydroxymethyltransferase (EC 2.1.2.1) from sheep liver was established by measuring changes in the activity, absorbance, and circular dichoism (CD) of the enzyme. The irreversible inhibition of the enzyme was characterized by three detectable steps: an initial rapid step followed by two successive steps with rate constants of 5.4 X 10(-3) s-1 and 1.4 X 10(-4) s-1. The first step was distinguished by a rapid disappearance of the enzyme absorbance peak at 425 nm, a decrease in the enzyme activity to 25% of the uninhibited velocity, and a lowering of the CD intensity at 432 nm to about 65% of the original value. The second step of the interaction was accompanied by a complete loss of enzyme activity and a marginal increase in the CD intensity at 432 nm. The final step resulted in the complete loss of the enzyme absorbance at 425 nm and of the CD band at 432 nm. The products of the reaction were identified as (a) apoenzyme by absorbance measurements, CD spectra, and reconstitution with pyridoxal 5'-phosphate and (b) a pyridoxal 5'-phosphate-D-cycloserine Schiff's base complex identified by its fluorescence and absorbance spectra. The Schiff base complex was expelled from the enzyme active site in the final step of the reaction. The proposed mechanism, which is different from those operative in other pyridoxal phosphate dependent enzymes, probably accounts for the selective inhibition of serine hydroxymethyltransferase by the drug in vivo.  相似文献   
7.
Chemical modification of amino acid residues with phenylglyoxal, N-ethylmaleimide and diethyl pyrocarbonate indicated that at least one residue each of arginine, cysteine and histidine were essential for the activity of sheep liver serine hydroxymethyltransferase. The second-order rate constants for inactivation were calculated to be 0.016 mM-1 X min-1 for phenylglyoxal, 0.52 mM-1 X min-1 for N-ethylmaleimide and 0.06 mM-1 X min-1 for diethyl pyrocarbonate. Different rates of modification of these residues in the presence and in the absence of substrates and the cofactor pyridoxal 5'-phosphate as well as the spectra of the modified protein suggested that these residues might occur at the active site of the enzyme.  相似文献   
8.
Temporal changes in the physical properties of healing fractures in rabbits were studied. The mechanical environment at the fracture site was measured and monitored during healing. Animals were sacrificed after 3 to 8 weeks. The results of healing were quantified by whole bone dynamic torsional strength tests. Torque-angle curves were recorded by computer. At maximum torque four parameters were calculated: torque, angle, energy absorbed and stiffness. Torque and stiffness increased while energy remained constant and angle decreased with time. However, values calculated by a constant deformation criteria showed the three strength parameters to increase with time. The rate of increase was highest for stiffness followed by torque and energy.  相似文献   
9.
10.
Crotaverrine and O-acetylcrotaverrine, isolated from the seeds of C. verrucosa Linn., have been shown by spectroscopy and chemical evidence to be the macrocyclic diesters of otonecine and diastereoisomeric integerrinecic acid. Hitherto, diastereoisomeric integerrinecic acid esters were not known to occur in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号