首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
It is well established that reduction of Ca2+ influx through L-type voltage-dependent Ca2+ channel (L-type VDCC), or increase of cytosolic cAMP concentration ([cAMP]c), inhibit contractile activity of smooth muscles in response to transmitters released from sympathetic nerves. Surprisingly, in this work we observed that simultaneous administration of L-type VDCC blocker (verapamil) and [cAMP]c enhancers (rolipram, IBMX and forskolin) potentiated purinergic contractions evoked by electrical field stimulation of rat vas deferens, instead of inhibiting them. These results, including its role in sympathetic transmission, can be considered as a “calcium paradox”. On the other hand, this potentiation was prevented by reduction of [cAMP]c by inhibition of adenylyl cyclase (SQ 22536) or depletion of Ca2+ storage of sarco-endoplasmic reticulum by blockade of Ca2+ reuptake (thapsigargin). In addition, cytosolic Ca2+ concentration ([Ca2+]c) evaluated by fluorescence microscopy in rat adrenal medullary slices was significantly reduced by verapamil or rolipram. In contrast, simultaneous incubation of adrenal slices with these compounds significantly increased [Ca2+]c. This effect was prevented by thapsigargin. Thus, a reduction of [Ca2+]c due to blockade of Ca2+ influx through L-type VDCC could stimulate adenylyl cyclase activity increasing [cAMP]c thereby stimulating Ca2+ release from endoplasmic reticulum, resulting in augmented transmitter release in sympathetic nerves and contraction.  相似文献   
2.

This study evaluated the effect of application of the semisynthetic triterpenes 3β-acetoxy-norlup-20-one (F4) and 3-chloro-4α,14α-dimethyl-5α-cholest-8-ene (F6) triterpene derivatives from Euphorbia officinarum on the growth of tomato seedlings under normal conditions and when challenged with the pathogens Verticillium dahliae and Agrobacterium tumefaciens. Foliar spray of F4 and F6 significantly improved growth rate, fresh weight, dry weight, and leaf area. In addition, they enhanced several physiological parameters including photosynthetic pigments, proline content, and nitrate reductase activity. Moreover, they induced H2O2 accumulation and increased the activity of several antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase. They also enhanced disease resistance against V. dahliae and A. tumefaciens. These results suggest that the two semisynthetic triterpenes represent new plant growth regulators and inducers of plant disease resistance.

  相似文献   
3.
Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (DeltaPsi(m)). We have found that staurosporine (STS) induces a loss in DeltaPsi(m) before GFP-Bax translocation can be measured. The onset of the DeltaPsi(m) loss is followed by a rapid and complete collapse of DeltaPsi(m) which is followed by Bax association with mitochondria. The mitochondria uncoupler FCCP, in the presence of the F(1)-F(0) ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of DeltaPsi(m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse DeltaPsi(m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.  相似文献   
4.
5.
Abstract: BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B2 receptors (B2R). BbKI was examined on smooth muscle contraction and Ca2+ mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 μm) increased [Ca2+]cand contraction, as observed with BK (2.0 μm). Not blocked by B1 receptors (B1R), the BbKI agonistic effect was blocked by the B2R antagonist, HOE-140 (6 μm), and the involvement of B2R was confirmed in B2R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca2+ release from internal storages, as a consequence of its interaction with B2R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B2R involvement.  相似文献   
6.
This work focused on the effect triterpene derivative 24-methylen-elemo-lanosta-8,24-dien-3-one (F3) on the induction of salt stress tolerance of the Moroccan grapevine cv. “Doukkali”. Hardwood cuttings of the grapevine from a homogeneous plant material collected in the field were grown in hydroponic medium under different salt concentrations and treated with 50 or 100 µg ml?1 of F3. Salt stress affected several physiological and biochemical parameters including relative water content, chlorophyll a and b content, peroxidase, and polyphenol oxidase activities, which decreased along with time. Meanwhile, proline, proteins, soluble sugars, H2O2, and carotenoid content, as well as phenolic compound content increased, suggesting an evidence of tolerance of this local variety to salinity. An exogenous supply of the triterpenic product increased all these parameters under normal conditions. In addition, F3 at low dose was found to be successful in lowering Na+ content and alleviating the inhibitory effects of salt stress on relative water content as well as on chlorophyll a and b.  相似文献   
7.
In the present study, the effect of seaweed extract (SE) from Fucus spiralis (Fs), Cystoseira myriophylloides (Cm) and Laminaria digitata (Ld) on in vitro plant tissue culture was examined. Combination of 25?% of SE from Cm with 25?% of MS medium increased adventitious shoot regeneration from Nicotiana benthamiana leaf discs explants by 620?%, when compared to the conventional regeneration medium. Similarly SE from Fs and Ld enhanced regeneration by about 500?%. However, when increasing SE to 50?%, only Cm significantly enhanced shoot regeneration. The effect of SE was also evaluated on in vitro micropropagation of N. benthamiana, grape, plum and apricot by assessing shoot length, number of leaves and internodes. When used alone but at lower concentrations (2.5 and 12.5?%), SE from Fs and Cm resulted in at least the same efficacy as MS alone for micropropagation of N. benthamiana shoots. However, for micropropagation of grapevine, plum and apricot woody plants, a combination of 50?% of SE from Cm or Fs with 50?% of their conventional micropropagation media was necessary. Rooting was also enhanced in N. benthamiana and grapevine, and was correlated with their higher concentrations of indole acetic acid when compared to SE from Ld. This finding, in addition to mineral analysis data, suggests that SE of Fs and Cm contain necessary nutrients and growth regulators to allow their use as medium for in vitro plant culture.  相似文献   
8.
Mitochondria in Ca2+ Signaling and Apoptosis   总被引:8,自引:0,他引:8  
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injuryand programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolicCa2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanismsby which they take up and release Ca2+ across their inner membrane. These transport processesfunction to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitivecellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ effluxpathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occursby the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. Duringcellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP,disruption of mitochondrial membrane potential (m) and cell death. In apoptosis signaling,collapse of ;m and cytochrome c release from mitochondria occur followed by activationof caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signalingprotein from the cytosol to the mitochondrial membrane, is another step during thisapoptosis-signaling pathway. The role of permeability transition in the context of cell death in relationto Bcl-2 family of proteins is discussed.  相似文献   
9.
Huntington’s disease (HD) is a genetic neurodegenerative disorder that is characterized by severe striatal atrophy with extensive neuronal loss and gliosis. Although the molecular mechanism is not well understood, experimental studies use the irreversible mitochondrial inhibitor 3-nitropropionic acid (3-NP) to mimic the neuropathological features of HD. In this study, the role of autophagy as a neuroprotective mechanism against 3-NP-induced astrocyte cytotoxicity was evaluated. Autophagy is a catabolic process that is essential for the turnover of cytosolic proteins and organelles and is involved in the modulation of cell death and survival. We showed that 3-NP-induced apoptosis, which was accompanied by Bax and Beclin-1 upregulation, was dependent on acidic vesicular organelle (AVO) formation after a continuous exposure to 3-NP for 12 h. The upregulation of Bax and Beclin-1 as well as AVO formation were normalized 24 h after 3-NP exposure.  相似文献   
10.
Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to 32P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca2+/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca2+ quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca2+ influx through voltage-dependent Ca2+ channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号