首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   14篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   10篇
  2007年   3篇
  2006年   1篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1992年   3篇
  1990年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
1.
The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.  相似文献   
2.

Background

Understanding the determinants of sedentary time during childhood contributes to the development of effective intervention programmes.

Purpose

To examine family and home-environmental determinants of 1-year change in objectively measured sedentary time after-school and at the weekend.

Methods

Participants wore accelerometers at baseline and 1 year later. Longitudinal data for after-school and weekend analyses were available for 854 (41.5%male, mean±SD age 10.2±0.3years) and 718 (41.8%male, age 10.2±0.3years) participants. Information on 26 candidate determinants, including socioeconomic status (SES), availability of electronic media and parental rules for sedentary behaviours was self-reported by children or their parents at baseline. Change in the proportion of registered time spent sedentary was used as the outcome variable in multi-level linear regression models, adjusted for age, sex, body mass index and baseline sedentary time. Simple and multiple models were run and interactions with sex explored.

Results

Children from higher socioeconomic status families exhibited greater increases in after-school (beta; 95% CI for change in % time spent sedentary 1.02; 0.37, 1.66) and weekend (1.42; 0.65, 2.18) sedentary time. Smaller increases in after-school sedentary time were observed in children with more siblings (−1.00; −1.69, −0.30), greater availability of electronic media (−0.81; −1.29, −0.33) and, for boys, more frequent family visits to the park (−1.89; −3.28, −0.51) and family participation in sport (−1.28; −2.54, −0.02). Greater maternal weekend screen-time (0.45; 0.08, 0.83) and, in girls, greater parental restriction on playing outside (0.91; 0.08, 1.74) were associated with larger increases in weekend sedentary time. The analytical sample was younger, more likely to be female, had lower BMI and was of higher SES than the original baseline sample.

Conclusions

Intervention strategies aimed at reducing parents’ weekend screen-time, increasing family participation in sports or recreation (boys) and promoting freedom to play outside (girls) may contribute towards preventing the age-related increase in sedentary time.  相似文献   
3.
4.
5.
Phosphatidylinositol 4-kinasebeta (PI4Kbeta) plays an essential role in maintaining the structural integrity of the Golgi complex. In a search for PI4Kbeta-interacting proteins, we found that PI4Kbeta specifically interacts with the GTP-bound form of the small GTPase rab11. The PI4Kbeta-rab11 interaction is of functional significance because inhibition of rab11 binding to PI4Kbeta abolished the localization of rab11 to the Golgi complex and significantly inhibited transport of vesicular stomatitis virus G protein from the Golgi complex to the plasma membrane. We propose that a novel function of PI4Kbeta is to act as a docking protein for rab11 in the Golgi complex, which is important for biosynthetic membrane transport from the Golgi complex to the plasma membrane.  相似文献   
6.
We describe the characterization of an 80-kDa protein cross-reacting with a monoclonal antibody against the human La autoantigen. The 80-kDa protein is a variant of rabip4 with an N-terminal extension of 108 amino acids and is expressed in the same cells. For this reason, we named it rabip4'. rabip4' is a peripheral membrane protein, which colocalized with internalized transferrin and EEA1 on early endosomes. Membrane association required the presence of the FYVE domain and was perturbed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Expression of a dominant negative rabip4' mutant reduced internalization and recycling of transferrin from early endosomes, suggesting that it may be functionally linked to rab4 and rab5. In agreement with this, we found that rabip4' colocalized with the two GTPases on early endosomes and bound specifically and simultaneously to the GTP form of both rab4 and rab5. We conclude that rabip4' may coordinate the activities of rab4 and rab5, regulating membrane dynamics in the early endosomal system.  相似文献   
7.
8.
UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.  相似文献   
9.
The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking.  相似文献   
10.
B cells play an essential role in the immune response. Upon activation they may differentiate into plasma cells that secrete specific antibodies against potentially pathogenic non-self antigens. To identify the cellular proteins that are important for efficient production of these antibodies we set out to study the B cell differentiation process at the proteome level. We performed an in-depth proteomic study to quantify dynamic relative protein expression patterns of several hundreds of proteins at five consecutive time points after lipopolysaccharide-induced activation of B lymphocytes. The proteome analysis was performed using a combination of stable isotope labeling using [13C6]leucine added to the murine B cell cultures, one-dimensional gel electrophoresis, and LC-MS/MS. In this study we identified 1,001 B cell proteins. We were able to quantify the expression levels of a quarter of all identified proteins (i.e. 234) at each of the five different time points. Nearly all proteins revealed changes in expression patterns. The quantitative dataset was further analyzed using an unbiased clustering method. Based on their expression profiles, we grouped the entire set of 234 quantified proteins into a limited number of 12 distinct clusters. Functionally related proteins showed a strong correlation in their temporal expression profiles. The quality of the quantitative data allowed us to even identify subclusters within functionally related classes of proteins such as in the endoplasmic reticulum proteins that are involved in antibody production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号