首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2012年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Background

Although “uremic fetor” has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia.

Methods

Breath analysis was performed in 28 adults with an eGFR ≥60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 10–59 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry.

Results

Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 10–59 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis.

Conclusion

Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules.  相似文献   
2.
3.
4.
Antisense oligodeoxynucleotides (AS-oligos) targeted to theNa+/Ca2+exchanger (NCX) inhibit NCX-mediatedCa2+ influx in mesenteric artery(MA) myocytes [Am. J. Physiol.269 (Cell Physiol. 38):C1340-C1345, 1995]. Here, we show AS-oligo knockdown ofNCX-mediated Ca2+ efflux. Ininitial experiments, the cytosolic freeCa2+ concentration([Ca2+]cyt)was raised, and sarcoplasmic reticulum (SR)Ca2+ sequestration was blockedwith caffeine and cyclopiazonic acid; the extracellularNa+-dependent (NCX) component ofCa2+ efflux was then selectivelyinhibited in AS-oligo-treated cells but not in controls (no oligos ornonsense oligos). In contrast, theLa3+-sensitive (plasmalemmaCa2+ pump) component ofCa2+ efflux was unaffected inAS-oligo-treated cells. Knockdown of NCX activity was reversed byincubating AS-oligo-treated cells in normal media for 5 days. Transient[Ca2+]cytelevations evoked by serotonin (5-HT) at 15-min intervals inAS-oligo-treated cells were indistinguishable from those in controls.When cells were stimulated every 3 min, however, the peak amplitudes ofthe second and third responses were larger, and[Ca2+]cytreturned to baseline more slowly, in AS-oligo-treated cells than incontrols. Peak 5-HT-evoked responses in the controls, but notAS-oligo-treated cells, were augmented more than twofold inNa+-free media. This implies thatNCX is involved in Na+ gradientmodulation of SR Ca2+ stores andcell responsiveness. The repetitive stimulation data suggest that theNCX may be important during tonic activation of arterial myocytes.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号