首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   16篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   9篇
  1991年   9篇
  1990年   14篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1976年   2篇
  1974年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
1.
W M Atkins  S G Sligar 《Biochemistry》1988,27(5):1610-1616
The kinetics of NADH consumption, oxygen uptake, and hydrogen peroxide production have been studied for norcamphor metabolism by cytochrome P-450cam. The kinetic deuterium isotope effects on these processes, with specifically deuteriated norcamphor, are 0.77, 1.22, and 1.16, respectively. Steady-state UV-visible spectroscopy indicates that transfer of the second electron to the dioxy ferrous P-450 is the rate-limiting step, as it is when camphor is the substrate. The inverse deuterium isotope effect for NADH consumption is consistent with an isotope-dependent branching between monooxygenase and oxidase activity, where these reactivities differ in their NADH:oxygen stoichiometries. However, no isotope-dependent redistribution of steady-state intermediates was detected by isotopic difference UV-visible spectroscopy in the presence of norcamphor. The kinetic isotope effects and steady-state spectral results suggest that the high-valent iron-oxo hydroxylating intermediate [FeO]3+ is reduced by NADH and the physiological electron-transfer proteins to afford water.  相似文献   
2.
The resonance Raman spectra of met-, deoxy-, and (carbonmonoxy)myoglobin (MbCO) are studied as a function of amino acid replacement at the distal histidine-E7 position. The synthetic wild type is found to be spectroscopically identical with the native material. The methionine and glycine replacements do not affect the met or deoxy spectra but do lead to distinct changes in the nu Fe-CO region of the MbCO spectrum. The native MbCO displays a pH-dependent population redistribution of the nu Fe-CO modes, while the analogous population in the mutant systems is found to be pH independent. This indicates that histidine-E7 is the titratable group in native MbCO. Moreover, the pH dependence of the population dynamics is found to be inconsistent with a simple two-state Henderson-Hasselbalch analysis. Instead, we suggest a four-state model involving the coupling of histidine protonation and conformational change. Within this model, the pK of the distal histidine is found to be 6.0 in the "open" configuration and 3.8 in the "closed" conformation. This corresponds to a 3 kcal/mol destabilization of the positively charged distal histidine within the hydrophobic pocket and suggests how protonation can lead to a larger population of the "open" conformation. At pH 7, the pocket is found to be "open" approximately 3% of the time. Further work, involving both IR and Raman measurements, allows the electron-nuclear coupling strengths of the various nu Fe-CO and nu C-O Raman modes to be determined. The slowly rebinding conformational state, corresponding to nu Fe-CO = 518 cm-1 (nu C-O = 1932 cm-1), displays unusually weak coupling of the Fe-CO mode to the Soret transition. Studies of the nu Fe-CO region as a function of temperature reveal that the equilibria between the conformational states are quenched in both the native and glycine mutant below the freezing point of the solvent. Unusual line narrowing of the nu Fe-CO modes at the phase transition is also observed in all samples studied. This line narrowing stands in marked contrast to the other heme Raman modes and suggests that Fe-CO librational motion and/or distal pocket vibrational (or conformational) excitations are involved in the line broadening at room temperature.  相似文献   
3.
10-Hydroperoxy-8,12-octadecadienoic acid (1) is reduced by ferric bleomycin in aqueous and methanol solutions to yield 10-oxo-8-decenoic acid (2) as the major product (80-90%). Trace amounts of 10-oxo-8,12-octadecadienoic acid (3) (5-10%) and 10-hydroxy-8,12-octadecadienoic acid (4) (5-10%) were also detected. The reduction product ratios remained relatively constant in the presence or absence of the reducing substrate phenol, over the pH range 6.5-8.5, in incubations from 30 s to 1 h, and over a series of ferric drug concentrations. In the presence of phenol, incubations of ferric bleomycin and 1 yielded 2,2'-biphenol and 4,4'-biphenol as oxidation products. In reactions where phenol was replaced with the drug's biological substrate DNA, 1 was found to support ferric bleomycin mediated DNA degradation. Extracts from these assays also found 2 to be the major reduction product derived from the oxidant, with trace quantities of 3 and 4 present. Control experiments demonstrated the reactions to be dependent on both 1 and ferric bleomycin. The reduction products 2 and 3 have previously been shown to originate from transient alkoxyl radicals formed by homolysis of the peroxy O-O bond. Product 4 results from heterolysis of the peroxy O-O bond [Labeque, R., & Marnett, L. J. (1987) J. Am. Chem. Soc. 109, 2828-2829]. The results of this investigation indicate that ferric bleomycin catalyzes the homolytic cleavage of the O-O bond of 1 almost exclusively while supporting various oxidative reactions.  相似文献   
4.
We have used resonance Raman spectroscopy to study 11 distal pocket mutants and the "wild type" and native ferric sperm whale myoglobin. The characteristic Raman core-size markers v4, v3, v2, and v10 are utilized to assign the spin and coordination state of each sample. It is demonstrated that replacements of the distal and proximal histidines can discriminate against H2O as a sixth ligand and favor a pentacoordinate Fe3+ atom. Soret absorption band blueshifts are correlated with the pentacoordinate heme environment. One E7 replacement (Arg) leads to an iron spin state change and produces a low spin species. The Glu and Ala mutations at position E11 leave the protein's spin and coordination unaltered. A laser-induced photoreduction effect is observed in all pentacoordinate mutants and seems to be correlated with the loss of the heme-bound water molecule.  相似文献   
5.
Summary Sequence-specific backbone 1H and 15N resonance assignments have been made for 95% of the amino acids in sperm whale myoglobin, complexed with carbon monoxide (MbCO). Many assignments for side-chain resonances have also been obtained. Assignments were made by analysis of an extensive series of homonuclear 2D spectra, measured with unlabeled protein, and both 2D and 3D 1H-15N-correlated spectra obtained from uniformly 15N-labeled myoglobin. Patterns of medium-range NOE connectivities indicate the presence of eight helices in positions that are very similar to those found in the crystal structures of sperm whale myoglobin. The resonance assignments of MbCO form the basis for determination of the solution structure and for hydrogen-exchange measurements to probe the stability and folding pathways of myoglobin. They will also form a basis for assignment of the spectra of single-site mutants with altered ligand-binding properties.  相似文献   
6.
C Di Primo  S G Sligar  G H Hoa  P Douzou 《FEBS letters》1992,312(2-3):252-254
The rates of NADH oxidation during the hydroxylation of camphor by cytochrome P-450cam were followed in the presence of co-solvents used to increase the osmotic pressure surrounding the protein-bound water. As a result, the measured Vmax decreases independently of the perturbant tested. Roughly 28 molecules of water, involved during the catalytic cycle, are deduced from the variation of Vmax as a function of osmotic pressure. These molecules, in part, could be those present in the cytochrome P-450cam-putidaredoxin interface.  相似文献   
7.
Y Q Feng  S G Sligar 《Biochemistry》1991,30(42):10150-10155
The structure and stability of apocytochrome b562 were explored using absorption and circular dichroism spectroscopic methods. The polypeptide chain retains a well-defined structure when the prosthetic heme group is removed from cytochrome b562. Circular dichroism measurements estimate 60% helicity for apocytochrome b562, compared with 80% helicity found in holocytochrome b562. At low pH, apocytochrome b562 displays a midpoint pH of 2.9, while ferricytochrome b562 displays a midpoint pH of 2.3. The unfolding of the apoprotein by urea and heat can be well approximated by the two-state transition model. The stability of apocytochrome b562 is significantly reduced from that of the holoprotein. The free energy of stabilization (delta G degrees) and the midpoint transition temperature (Tm) for apocytochrome b562 are found to be 3.2 +/- 0.5 kcal/mol and 52.3 +/- 0.9 degrees C, respectively, compared with 6.6 +/- 0.5 kcal/mol and 67.2 +/- 0.5 degrees C for ferricytochrome b562. The smaller heat capacity change upon unfolding of apocytochrome b562 than that of ferricytochrome b562, estimated from the thermodynamic parameters, indicates that apocytochrome b562 possesses a smaller hydrophobic core than holocytochrome b562. Size-exclusion chromatography studies indicate that the apoprotein is slightly more extended in molecular dimension than ferricytochrome b562. The data suggest that apocytochrome b562 resembles a "molten globule" or a "collapsed form" of the holoprotein, in which secondary structure formation is largely complete while the global folding is either only partially complete or dynamically expanded.  相似文献   
8.
Y Q Feng  A J Wand  S G Sligar 《Biochemistry》1991,30(31):7711-7717
The 1H and 15N resonances of uniformly enriched apocytochrome b562 (106 residues) have been assigned. The assignment work began with the identification of the majority of HN-H alpha-H beta subspin systems in two-dimensional DQF-COSY and TOCSY spectra of unlabeled protein in D2O and in 95% H2O/5% D2O buffer. Intraresidue and interresidue NOE connectivities were then searched for in two-dimensional homonuclear NOESY spectra recorded on unlabeled protein and in the three-dimensional NOESY-HMQC spectrum recorded on uniformly 15N-enriched protein. Those data, combined with the main-chain-directed assignment strategy (MCD), led to the assignment of the main-chain and many side-chain resonances of 103 of the 106 residues. Qualitatively, the helical conformation is found to be the dominant secondary structure in apocytochrome b562 as it is in holocytochrome b562. The helical segments in apocytochrome b562 overlap extensively with the helical regions defined in the crystal structure of ferricytochrome b562. In addition, a number of tertiary NOEs have been identified which indicate that the global fold of the apoprotein at least partially resembles the four-helix bundle of the holoprotein. The results presented here, together with the evidence obtained with other methods [Feng and Sligar (1991) Biochemistry (submitted)], support the notion that the interior of the protein is fluid and may correspond to a molten globule state.  相似文献   
9.
Identification of 2Fe-2S cysteine ligands in putidaredoxin   总被引:2,自引:0,他引:2  
The iron-sulfur center of putidaredoxin is coordinated by four cysteine sulfhydrals. In order to determine which of the six cysteine residues in the protein coordinate the Fe-S center, we have individually mutated cysteine residues 73, 85 and 86 into serines. Of these mutant proteins, only C85S and C73S express holo-protein as evidence by SDS-PAGE and EPR spectroscopy. This leads us to the conclusion that residues 39,45,48, and 86 are the cysteines that coordinate the iron-sulfur center in putidaredoxin.  相似文献   
10.
We have examined the 5-exo-hydroxylation of camphor by cytochrome P450 in [18O] water/buffer solution. In the NADHO2-dependent reaction of the reconstituted multienzyme system, no 18O-label is observed in the product alcohol. Similarly, in the m-chloroperbenzoic acid or cumene hydroperoxide supported reactions with ferric P450, solvent oxygen is not incorporated into hydroxycamphor. When the analagous reaction is carried out using iodosobenzene as the exogenous oxidant, however, the alcoholic oxygen of the product is derived entirely from the solvent. These results cannot be explained by equilibration of the iodosobenzene oxygen with solvent water before reacting with P450, and suggest a unique mechanism for iodosobenzene-supported P450 oxygenations. We propose two distinct mechanistic activities for cytochrome P450: a hydroxylase, and an oxene transferase, with the former encompassing the classic oxygenase as well as “peroxygenase” reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号