首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   23篇
  2024年   2篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   14篇
  2013年   7篇
  2012年   11篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   11篇
  2007年   15篇
  2006年   18篇
  2005年   15篇
  2004年   4篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1992年   6篇
  1990年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   3篇
  1965年   3篇
  1962年   1篇
  1958年   1篇
  1953年   1篇
  1952年   1篇
  1948年   1篇
  1944年   1篇
  1918年   2篇
  1914年   2篇
排序方式: 共有256条查询结果,搜索用时 62 毫秒
1.
2.
Summary The morphology, innervation, and neural control of the anterior arterial system of Aplysia californica were investigated. Immunocytochemical and histochemical techniques generated positive reactions in the anterior arterial system for several neuroactive substances, including SCPB, FMRFamide, R151 peptide, dopamine and serotonin. Three neurons were found to innervate the rostral portions of the anterior arterial tree. One is the identified peptidergic neuron R15 in the abdominal ganglion, and the other two are a pair of previously unidentified neurons, one in each pedal ganglion, named pedal arterial shorteners (PAS)- The endogeneously bursting neuron R15 was found to innervate the proximal anterior aorta. It also innervates a branch of the distal anterior aorta, the left pedal-parapodial artery. Activity in R15 causes constriction of the left pedal-parapodial artery. This effect is presumed to direct hemolymph towards the genital groove and penis on the right side in vivo. This vasoconstrictor action of R15 is mimicked by the R151 peptide. The PAS neuron pair causes longitudinal contraction of the rostral anterior aorta and the pedal-parapodial arteries. In vivo, the pair is active during behaviors involving head withdrawal and turning. By adjusting the length of the arteries during postural changes, the PAS neurons may prevent disturbances in blood flow due to bending or kinking of the arterial walls.  相似文献   
3.
A study of the effects of altered calcium and magnesium levels on the capacities of Acetabularia plants to elongate and to form whorls or caps revealed sharp transitions of regenerative state over small concentration changes of external calcium at both reduced and elevated levels. Cobalt and lanthanum, which interfere with calcium fluxes across membranes, also affect regeneration and morphogenesis with sharply defined transition ranges. It is shown that these effects are localized at the growing tip. The nature of the mechanisms involved in the transitions from one morphogenetic state to another in the regenerative process is considered.  相似文献   
4.
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.  相似文献   
5.
6.
Global nitrogen (N) deposition rates in terrestrial environments have quadrupled since preindustrial times, causing structural and functional changes of ecosystems. Different emission reduction policies were therefore devised. The aim of our study was to investigate if, and over what timescale, processes of soil organic matter (OM) transformation respond to a decline in atmospheric N deposition. A N‐saturated spruce forest (current N deposition: 34 kg ha?1 yr?1; critical N load: 14 kg ha?1 yr?1), where N deposition has been reduced to 11.5 kg ha?1 yr?1 since 1991, was studied. Besides organic C and organic and inorganic N, noncellulosic carbohydrates, amino sugars and amino acids were determined. A decline in organic N in litter indicated initial effects at plant level. However, there were no changes in biomarkers upon the reduction in N deposition. In addition, inorganic N was not affected by reduced N deposition. The results showed that OM cycling and transformation processes have not responded so far. It was concluded that no direct N deposition effects have occurred due to the large amount of stored organic N, which seems to compensate for the reduction in deposited N. Obviously, the time span of atmospheric N reduction (about 14.5 years) is too short compared with the mean turnover time of litter to cause indirect effects on the composition of organic C and N compounds. It is assumed that ecological processes, such as microbial decomposition or recycling of organic N and C, react slowly, but may start within the next decade with the incorporation of the new litter.  相似文献   
7.
A prevailing paradigm in forest ecology is that wood‐boring beetles facilitate wood decay and carbon cycling, but empirical tests have yielded mixed results. We experimentally determined the effects of wood borers on fungal community assembly and wood decay within pine trunks in the southeastern United States. Pine trunks were made either beetle‐accessible or inaccessible. Fungal communities were compared using culturing and high‐throughput amplicon sequencing (HTAS) of DNA and RNA. Prior to beetle infestation, living pines had diverse fungal endophyte communities. Endophytes were displaced by beetle‐associated fungi in beetle‐accessible trees, whereas some endophytes persisted as saprotrophs in beetle‐excluded trees. Beetles increased fungal diversity several fold. Over forty taxa of Ascomycota were significantly associated with beetles, but beetles were not consistently associated with any known wood‐decaying fungi. Instead, increasing ambrosia beetle infestations caused reduced decay, consistent with previous in vitro experiments that showed beetle‐associated fungi reduce decay rates by competing with decay fungi. No effect of bark‐inhabiting beetles on decay was detected. Platypodines carried significantly more fungal taxa than scolytines. Molecular results were validated by synthetic and biological mock communities and were consistent across methodologies. RNA sequencing confirmed that beetle‐associated fungi were biologically active in the wood. Metabarcode sequencing of the LSU/28S marker recovered important fungal symbionts that were missed by ITS2, though community‐level effects were similar between markers. In contrast to the current paradigm, our results indicate ambrosia beetles introduce diverse fungal communities that do not extensively decay wood, but instead reduce decay rates by competing with wood decay fungi.  相似文献   
8.
The use of potassium osmate, K2[OsO2(OH)4], as a precursor for some cyclopentadienyl-osmium complexes is described. The X-ray structures of OsBr(PPh3)2Cp, OsCl(dppe)Cp and OsX(dppe)Cp (X = Cl, Br) are reported.  相似文献   
9.
The vital roles that sponges play in marine habitats are well-known. However, sponges inhabiting freshwaters have been largely ignored despite having widespread distributions and often high local abundances. We used natural abundance stable isotope signatures of carbon and nitrogen (δ 13C and δ 15N) to infer the primary food source of the cosmopolitan freshwater sponge Spongilla lacustris. Our results suggest that S. lacustris feed largely on pelagic resources and may therefore link pelagic and benthic food webs. A facultative association between S. lacustris and endosymbiotic green algae caused S. lacustris to have significantly depleted carbon and nitrogen signatures that may reflect carbon and nitrogen exchange between sponges and their symbiotic algae. Isotopic data from specialist sponge consumers demonstrated that sponges hosting zoochlorellae were the major component of the diet of the spongillafly Climacia areolaris and the sponge-eating caddisfly Ceraclea resurgens suggesting that the symbiosis between freshwater sponges and algae is important to sponge predator trophic ecology. Our results help define the role of sponges in freshwater ecosystems and shed new light on the evolution and ecological consequences of a complex tri-trophic symbiosis involving freshwater sponges, zoochlorellae, and spongivorous insects.  相似文献   
10.
Insects that depend on microbial mutualists evolved a variety of organs to transport the microsymbionts while dispersing. The ontogeny and variability of such organs is rarely studied, and the microsymbiont*s effects on the animal tissue development remain unknown in most cases. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae or Platypodinae) and their mutualistic fungi are an ideal system to study the animalfungus interactions. While the interspecific diversity of their fungus transport organ一 mycangia—is well-known, their developmental plasticity has been poorly described. To determine the ontogeny of the mycangium and the influence of the symbiotic fungus on the tissue development, we dissected by hand or scanned with micro-CT the mycangia in various developmental stages in five Xylosandrus ambrosia beetle species that possess a large, mesonotal mycangium: Xylosandrus amputatus. Xylosandrus compactus, Xylosandrus crassiusculus, Xylosandrus discolor, and Xylosandrus germanus. We processed 181 beetle samples from the United States and China. All five species displayed three stages of the mycangium development:(1) young teneral adults had an empty, deflated and cryptic mycangium without fungal mass;(2) in fully mature adults during dispersal, the promesonotal membrane was inflated, and most individuals developed a mycangium mostly filled with the symbiont, though size and symmetry varied;and (3) after successful establishment of their new galleries, most females discharged the bulk of the fun gal inoculum and deflated the mycangium. Experimental aposymbiotic individuals demonstrated that the pronotal membrane invaginated independently of the presence of the fungus, but the fungus was required for inflation. Mycangia are more dynamic than previously thought, and their morphological changes correspond to the phases of the symbiosis. Importantly, studies of the fungal symbionts or plant pathogen transmission in ambrosia beetles need to consider which developmental stage to sample. We provide illustrations of the different stages, including microphotography of dissections and micro-CT scans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号