首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 383 毫秒
1
1.
The importance of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP) and vimentin for astrocyte function was studied by investigating astrocytes prepared from GFAP-/-and/or vimentin-/- mice. The rate of glucose uptake through facilitative hexose transporters was not affected by depletion of GFAP or vimentin. Similarly, the absence of these IF proteins did not affect ascorbate uptake, under control or cyclic AMP-stimulated conditions, or ascorbate efflux through volume-sensitive organic anion channels. However, compared with wild-type astrocytes, glutamine concentrations were increased up to 200% in GFAP-/- astrocytes and up to 150% in GFAP+/-astrocytes and this increase was not dependent on the presence of vimentin. GFAP-/- astrocytes in culture still contain IFs (made of vimentin and nestin), whereas GFAP-/-vim-/- cultured astrocytes lack IFs. Thus, glutamine levels appear to correlate inversely with GFAP, rather than depend on the presence of IFs per se. Furthermore, the effect of GFAP is dose-dependent since the glutamine concentration in GFAP+/- astrocytes falls between those in wild-type and GFAP-/-astrocytes.  相似文献   
2.
Ascorbate Transport and Intracellular Concentration in Cerebral Astrocytes   总被引:3,自引:1,他引:2  
Abstract: Regulation of the initial rate of uptake and steady-state concentration of ascorbate (reduced vitamin C) was investigated in rat cerebral astrocytes. Although these cells did not synthesize vitamin C, they accumulated millimolar concentrations of ascorbate when incubated with medium containing the vitamin at a level (200 µ M ) typical of brain extracellular fluid. Initial rate of [14C]-ascorbate uptake and intracellular ascorbate concentration were dependent on extracellular Na+ and sensitive to the anion transport inhibitor sulfinpyrazone. Comparison of the efflux profiles of ascorbate and 2',7'-bis(carboxyethyl)-5 (or -6)-carboxyfluorescein from astrocytes permeabilized with digitonin localized most intracellular ascorbate to the cytosol. Pretreatment of astrocytes with dibutyryl cyclic AMP (dBcAMP) doubled their initial rate of sulfinpyrazone-sensitive [14C]ascorbate uptake compared with cells treated with either n -butyric acid or vehicle. dBcAMP also increased steady-state intracellular ascorbate concentration by 39%. The relatively small size of the change in astrocytic ascorbate concentration was explained by the finding that dBcAMP increased the rate of efflux of the vitamin from ascorbate-loaded cells. These results indicate that uptake and efflux pathways are stimulated by cyclic AMP-dependent mechanisms and that they regulate the cytosolic concentration of ascorbate in astrocytes.  相似文献   
3.
Abstract: Cerebral ischemia and trauma lead to rapid increases in cerebral concentrations of cyclic AMP and dehydroascorbic acid (DHAA; oxidized vitamin C), depletion of intracellular ascorbic acid (AA; reduced vitamin C), and formation of reactive astrocytes. We investigated astrocytic transport of AA and DHAA and the effects of cyclic AMP on these transport systems. Primary cultures of astrocytes accumulated millimolar concentrations of intracellular AA when incubated in medium containing either AA or DHAA. AA uptake was Na+-dependent and inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), whereas DHAA uptake was Na+-independent and DIDS-insensitive. DHAA uptake was inhibited by cytochalasin B, d -glucose, and glucose analogues specific for facilitative hexose transporters. Once inside the cells, DHAA was reduced to AA. DHAA reduction greatly decreased astrocytic glutathione concentration. However, experiments with astrocytes that had been previously depleted of glutathione showed that DHAA reduction does not require physiological concentrations of glutathione. Astrocyte cultures were treated with a permeant analogue of cyclic AMP or forskolin, an activator of adenylyl cyclase, to induce cellular differentiation and thus provide in vitro models of reactive astrocytes. Cyclic AMP stimulated uptake of AA, DHAA, and 2-deoxyglucose. The effects of cyclic AMP required at least 12 h and were inhibited by cycloheximide, consistent with a requirement for de novo protein synthesis. Uptake and reduction of DHAA by astrocytes may be a recycling pathway that contributes to brain AA homeostasis. These results also indicate a role for cyclic AMP in accelerating the clearance and detoxification of DHAA in the brain.  相似文献   
4.
Osmotic Swelling Stimulates Ascorbate Efflux from Cerebral Astrocytes   总被引:3,自引:2,他引:1  
Abstract: Ascorbate (reduced vitamin C) is an important enzyme cofactor, neuromodulator, and antioxidant that is stored at millimolar concentrations in the cytosol of cerebral astrocytes. Because these cells swell during hyponatremia, cerebral ischemia, and trauma, we investigated the effects of osmotic stress on astrocytic transport of ascorbate. Ascorbate efflux from primary cultures of rat astrocytes was rapidly (within 1 min) increased by incubation in hypotonic medium. Efflux also increased when astrocytes, which had been adapted to a hypertonic environment, were swollen by transfer to isotonic medium. Swelling-induced ascorbate efflux was inhibited by the anion-transport inhibitors 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). The pathway that mediates ascorbate efflux was found to be selective because a larger anion, 2',7'-bis(carboxyethyl)-5-(or -6)-carboxyfluorescein (BCECF), was retained in the swollen astrocytes. Na+-dependent ascorbate uptake into astrocytes was inhibited slightly during the first minute of hypotonic stress, indicating that the sodium ascorbate cotransporter does not mediate swelling-induced efflux. Cell concentration of authentic ascorbate was measured by HPLC with electrochemical detection. When astrocytes were incubated in ascorbate-free medium, hypotonicity decreased cell ascorbate concentration by 50% within 3 min. When astrocytes were incubated in ascorbate-supplemented hypotonic medium, intracellular ascorbate concentration was restored within 10 min because uptake remained effective. Many pathological conditions cause brain cell swelling and formation of reactive oxygen species. Ascorbate release during astrocytic swelling may contribute to cellular osmoregulation in the short-term and the scavenging of reactive oxygen species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号