首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   3篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target.  相似文献   
2.
Here the current status of knowledge on some well-characterized transporters located in the vacuolar membrane is reviewed. As different cellular compartments and even different cells may be involved in certain steps of a biosynthetic pathway, the regulation of the flux is not only dependent on structural genes encoding enzymes catabolizing certain steps but also transport has a major regulatory function. The aim of the present review is to give an overview of the present knowledge of transport of secondary metabolites in plants, and to use this information in the context of our knowledge about Catharanthus roseus alkaloid biosynthesis. This should lead to further insight in the possible role of various transporters in the regulation of the biosynthesis of these alkaloids.  相似文献   
3.
Feeding stemmadenine to Catharanthus roseus cell suspension culture resulted in the accumulation of catharanthine, tabersonine and condylocarpine. Condylocarpine is not an intermediate in the pathway to catharanthine or tabersonine when it is fed to the cultures. The results support the hypothesis that stemmadenine is an intermediate in the pathway to catharanthine and tabersonine.  相似文献   
4.
Lactococcus garvieae BCC 43578 produces a novel class II bacteriocin, garvieacin Q (GarQ), 70 amino acids in length and containing a 20-amino-acid N-terminal leader peptide. It is cleaved at the Gly-Gly site to generate the mature GarQ (5,339 Da), which is especially inhibitory against Listeria monocytogenes ATCC 19115 and other L. garvieae strains.  相似文献   
5.
The present study focused on comparative proteome analyses of low- and high-temperature stresses and potential protein-protein interaction networks, constructed by using a bioinformatics approach, in response to both stress conditions. The data revealed two important points: first, the results indicate that low-temperature stress is tightly linked with oxidative stress as well as photosynthesis; however, no specific mechanism is revealed in the case of the high-temperature stress response. Second, temperature stress was revealed to be linked with nitrogen and ammonia assimilation. Moreover, the data also highlighted the cross-talk of signaling pathways. Some of the detected signaling proteins, e.g., Hik14, Hik26 and Hik28, have potential interactions with differentially expressed proteins identified in both temperature stress conditions. Some differentially expressed proteins found in the Spirulina protein-protein interaction network were also examined for their physical interactions by a yeast two hybrid system (Y2H). The Y2H results obtained in this study suggests that the potential PPI network gives quite reliable potential interactions for Spirulina. Therefore, the bioinformatics approach employed in this study helps in the analysis of phenomena where proteome analyses of knockout mutants have not been carried out to directly examine for specificity or cross-talk of signaling components.  相似文献   
6.
Chitosan is a biopolymer with multiple agricultural applications. The objective of this research was to identify the mechanism required for the chitosan response. Chitosan clearly induced resistance to osmotic stress (a surrogate for drought stress) in the ‘Leung Pratew 123’ (‘LPT123’) rice (Oryza sativa L. ‘Leung Pratew123’) by enhancing plant growth and maintenance of the photosynthetic pigments during osmotic stress, but not in the derived mutated line, LPT123-TC171. Hydrogen peroxide (H2O2) was increased after osmotic stress in both lines, but higher levels were found in the LPT123 cultivar. Chitosan application did not affect the H2O2 or glutathione content under the osmotic stress condition in the LPT123 cultivar, but decreased H2O2 accumulation in the LPT123-TC171 line. The 20-fold lower glutathione level in the LPT123 cultivar suggested a low glutathione-ascorbate cycle activity that would lead to the higher H2O2 levels. Whereas, the chitosan-mediated reduction in glutathione levels in the LPT123-TC171 line during osmotic stress suggested a higher glutathione-ascorbate cycle activity leading to low H2O2 levels. Additionally, a higher peroxidase and catalase activity following chitosan treatment of the LPT123-TC171 line supports the lower observed H2O2 level. The lipid peroxidation after osmotic stress was decreased by chitosan treatment in LPT123, but not in LPT123-TC171. The exogenous H2O2 application with chitosan treatment in LPT123-TC171 could enhance plant growth during osmotic stress. It is concluded that the limited H2O2 level, the signal molecule for chitosan responses in the LPT123-TC171 line, resulted in no beneficial effects of chitosan application for osmotic stress. Therefore, H2O2 is proposed to be one of the key components for plant growth stimulation during osmotic (drought) stress by chitosan.  相似文献   
7.
8.
9.
10.
A cryopreservation protocol for Tabernaemontana divaricata suspension cell cultures (6 Div BW 101) was established. Cells were precultured in MS medium supplemented with 0.5 and 0.33 M mannitol for 2 or 3 days following with incubation in MS media with a mixture of 1 M sucrose, 0.5 M glycerol, 0.5 M DMSO, and 0.04 M L-proline as cryoprotectant in an ice bath for 20 min. The cells were transferred into 2 ml cryogenic vials and then, the vials were put into the cryogenic container prior to placing at a −80 °C freezer for 4 h followed by rapid immersion in liquid nitrogen. The cells were transferred without washing a MS medium solidified with 7% (w/v) agarose. Cells that were precultured 3 days after subculturing in MS medium supplemented with 0.5 M mannitol for 3 days, showed growth recovery. Metabolic profiling of control and cryopreserved Tabernaemontana divaricata cells was performed by 1H-NMR spectroscopy combined with PCA, GC, and HPLC. Differences of metabolic accumulation were found in the level of several amino acids, carbohydrates, and fumaric acid. However, the levels of the main alkaloid precursor tryptamine did not change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号