首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1983年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
A Sitaramayya 《Biochemistry》1986,25(19):5460-5468
Rhodopsin kinase was extracted into a buffer containing 200 mM KCl and no MgCl2. The activity of the enzyme was stabilized with the use of a mixture of protease inhibitors, aprotinin, benzamidine, leupeptin, and pepstatin. The extract consisted of three major proteins of molecular weight (Mr) 65,000, 56,000, and 37,000, of which the Mr 65,000 protein was identified with the kinase activity since preparations containing the other proteins had no kinase activity and the Mr 65,000 protein was phosphorylated when the extract was incubated with ATP. A reconstituted cGMP phosphodiesterase (PDE) system consisting of peripheral protein-depleted rod disk membranes (RDM), GTP binding protein (G-protein), and PDE was used to test the effectiveness of the rhodopsin kinase preparation in mediating the ATP-dependent quench of light activation of PDE. In the absence of kinase, light-activated PDE activity lasted several minutes. In its presence, ATP and to a lesser extent GTP quenched the activation about as rapidly as in rod disk membranes. The influence of kinase was unaffected by increasing G-protein or PDE content of the reconstituted system but was slowed down by brighter flashes, showing that quench was caused by the inactivation of bleached rhodopsin and not of PDE or G-protein.  相似文献   
2.
1. An inhibitor of cytoplasmic guanine deaminase of rat liver was isolated from liver ;heavy mitochondrial' fraction after freezing and thawing and treatment with Triton X-100. 2. Submitochondrial fractionation revealed that the inhibitor was localized in the outer-membrane fraction. 3. The method of purification of inhibitor, involving precipitation with (NH(4))(2)SO(4) and chromatography on DEAE-cellulose, its precipitability by trichloroacetic acid and the pattern of absorption in the u.v. indicated that the inhibitor was a protein. In confirmation, tryptic digestion of the isolated material resulted in destruction of the inhibitor activity. The inhibitor was stable to acid, but labile to heat. 4. The isolated inhibitor required phosphatidylcholine (lecithin) for activity. Phosphatidylcholine also partially protected the inhibitor against heat inactivation. 5. When detergent treatment was omitted, the inhibitor activity of frozen mitochondria was precipitated by (NH(4))(2)SO(4) in a fully active form without supplementation with phosphatidylcholine, indicating that Triton X-100 ruptured the linkage between inhibitor and lipid. 6. A reconstituted sample of inhibitor-phosphatidylcholine complex was precipitated in a fully active form by dialysis against 2-mercaptoethanol, but treatment of the precipitate with NaCl yielded an extract which was inactive unless supplemented with fresh phosphatidylcholine. 7. We interpret the results as evidence that the inhibitor was present in vivo as a lipoprotein and that once the complex was dissociated by the action of detergent and the protein precipitated, there was an absolute need for exogenous phosphatidylcholine for its activity. The manner in which inhibitor associated with the outer membrane of rat liver mitochondria might regulate the activity of the enzyme in the supernatant has been suggested.  相似文献   
3.
4.
Soluble guanylate cyclase (sGC) is highly activated by nitric oxide (NO) and is the known mediator of the effects of NO on a variety of physiological processes. The rates at which sGC is activated and deactivated are therefore of wide interest since they determine the duration of a tissue's response to NO. The effect of NO on smooth muscle dissipates in 1-2 min, suggesting that both activation and deactivation are fast. In vitro measurements show that the activation of sGC occurs in less than a second, while the deactivation takes several hours at 20 degrees C. However, recent reports indicate that Mg-GTP, oxyhemoglobin, and reducing and oxidizing agents could deactivate the cyclase in several seconds to minutes, though the effectiveness of each of these agents is in dispute. We investigated the lifetime of NO-sGC in the cytosol of retina by monitoring its enzymatic activity at 20 degrees C. Our results show that Mg-GTP, the substrate of NO-sGC, has no influence on the deactivation. Similarly, reducing agents glutathione and dithiothreitol shortened the half-life of NO-sGC only by about 30%. The greatest effect on the deactivation was caused by scavengers of NO: oxyhemoglobin reduced the half-life of NO-sGC from 106 min to 18 s; another NO scavenger, 2-(4-carboxyphenyl)-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), reduced it to 42 s (20 degrees C). Similarly rapid deactivation was observed with the enzyme from bovine lung, immunoprecipitated enzyme from bovine retina, and heme-deficient enzyme from bovine retina reconstituted with heme. On the other hand, YC-1, an activator of sGC, stabilized the activated enzyme, preventing NO dissociation, as was evident from the inability of oxyhemoglobin or CPTIO to deactivate NO-sGC. Calcium, which is known to inhibit NO-sGC, also inhibited the effects of oxyhemoglobin and CPTIO, slowing down the deactivation of the enzyme. Lithium, which is also known to inhibit NO-sGC, had no effect on the deactivation rate of the enzyme. These results, taken together, suggest that two factors with major impact on the lifetime of NO-sGC are the proximity to NO scavengers and the calcium concentration in the cell.  相似文献   
5.
Light activation of cyclic GMP hydrolysis in rod outer segments is mediated by a G-protein which is active in the GTP-bound form. Substitution of GTP with a nonhydrolyzable GTP analogue is thought to leave the G-protein in a persistently activated state, thereby prolonging the hydrolysis of cyclic GMP. Restoration of cyclic GMP concentration in the cell also depends upon GTP since it is the substrate for guanylate cyclase, but little is known about the effects of GTP analogues on this enzyme. We report here the effects of the analogues of GTP and ATP as inhibitors and substrates of rod disk membrane guanylate cyclase. The rate of cyclic GMP synthesis from GTP in rod disk membranes was about 50 pmol min-1 (nmol of rhodopsin)-1. Analogues of GTP and adenine nucleotides competitively inhibited the cyclase activity. The order of inhibition, with magnesium as metal cofactor, was ATP greater than GMP-PNP greater than AMP-PNP approximately GTP-gamma-S; with manganese, AMP-PNP was more inhibitory than GTP-gamma-S. The inhibition constants, with magnesium as cofactor, were 0.65-2.0 mM for GTP-gamma-S, 0.4-0.8 mM for GMP-PNP, 1.5-2.3 mM for AMP-PNP, and 0.07-0.2 mM for ATP. The fraction of cyclase activity inhibited by analogues was similar at 1 and 0.03 microM calcium. Besides inhibition of cyclase, the analogues also served as its substrates. GTP-gamma-S substituted GTP with about 85% efficiency while GMP-PNP and ATP were about 5 and 7% as efficient, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
The Ca2+ dependence of the kinetics and light sensitivity of light-activated phosphodiesterase was studied with a pH assay in toad and bovine rod disk membranes (RDM), and in a reconstituted system containing GTP-binding protein, phosphodiesterase and rhodopsin kinase. Three statistics, peak hydrolytic velocity, turnoff time, and time to peak velocity, were measured. ATP decreased phosphodiesterase light sensitivity nearly 10-fold and accelerated the dim-flash kinetics of cGMP hydrolysis when compared to those with GTP alone. CA2+ reversed all of the effects of ATP, Ca2+ increased peak velocity, turnoff time, and time to peak velocity, to the values obtained with GTP alone. The Ca2+ dependence of peak velocity and turnoff time can be characterized as hyperbolic saturation functions with a K0.5 for Ca2+ of 1.0-1.5 mM in toad RDM. In bovine RDM the Ca2+ dependence of peak velocity and turnoff time has a K0.5 of 0.1 mM Ca2+. The Ca2+ dependence in the reconstituted system is similar to that in bovine RDM for peak velocity (K0.5 = 0.1 mM Ca2+) but differs for turnoff time (K0.5 = 2.5 mM Ca2+). We tested the hypothesis that a soluble modulator, normally required to confer submicromolar Ca2+ sensitivity, was too dilute in our assay by comparing data obtained at one RDM concentration with those obtained at 10-fold higher RDM, and therefore a constituent protein, concentration. We observe no difference and present a formal analysis of these data that excludes the hypothesis that the soluble modulator binds its target protein with Kd less than 5 microM. The lack of submicromolar Ca2+ dependence of any of the steps in the cGMP cascade that underlie cGMP phosphodiesterase activation and inactivation in vitro argues against Ca2+ regulation of these steps having a significant role in the light adaptation of the intact rod.  相似文献   
7.
Retinaldehyde and retinoic acid are derivatives of vitamin A, and retinaldehyde is the precursor for the synthesis of retinoic acid, a well-known inhibitor of gap junctional intercellular communication. In this investigation, we asked the question if retinaldehyde has similar effects on gap junctions. Gap junctional intercellular communication was measured by scrape-loading and preloading dye-transfer methods, and studies were carried out mainly on cultured liver epithelial cells. Retinaldehyde was found to be a more potent inhibitor (dye transfer reduced by 50% at 2.8 μM) than retinoic acid (dye transfer reduced by 50% at 30 μM) and glycyrrhetinic acid (dye transfer reduced by 50% at 65 μM). Both the 11-cis and all-trans forms of retinaldehyde were equally effective. Retinaldehyde inhibited dye transfer of both anionic Lucifer yellow and cationic Neurobiotin. Inhibition by retinaldehyde developed in less than two minutes at 50 μM, but unlike the reported case with retinoic acid, recovery was slower, though full. In addition to liver epithelial cells, retinaldehyde inhibited gap junctional communication in lens epithelial cells, retinal pigment epithelial cells and retinal ganglion cells.  相似文献   
8.
The hypothesis that cyclic GMP is the internal transmitter of retinal rod phototransduction, when combined with the observations that 8-bromo-cyclic GMP opens the cyclic GMP-dependent outer segment conductance and that rods into which 8-bromo-cyclic GMP has been injected still respond to light, predicts that the light-activated phosphodiesterase (EC 3.1.4.17) must catalyze the hydrolysis of 8-bromo-cyclic GMP. This hypothesis was tested by measuring light-activated toad rod disk membrane phosphodiesterase with a pH assay technique. Phosphodiesterase-catalyzed hydrolysis of 8-bromo-cyclic GMP was confirmed: at pH 8.0, total proton production after flash activation was identical to total amount of 8-bromo-cyclic GMP added as substrate. Photoactivated phosphodiesterase was remarkably less efficient in catalyzing the hydrolysis of 8-bromo-cyclic GMP than of cyclic GMP: Vmax for 8-bromo-cyclic GMP was 0.063 M/M rhodopsin/s, whereas that for cyclic GMP was 11 M/M rhodopsin/s--170 times greater. The Km for 8-bromo-cyclic GMP was 160 microM, and for cyclic GMP, 590 microM. 8-bromo-cyclic GMP competitively inhibited phosphodiesterase-catalyzed hydrolysis of cyclic GMP with a Ki of 1.2 mM. Complete reaction progress curves were analyzed for obedience to Michaelis-Menten kinetics: cyclic GMP hydrolysis, 8-bromo-cyclic GMP hydrolysis, and cyclic GMP hydrolysis in the presence of 8-bromo-cyclic GMP as competitive inhibitor were found to follow the integrated form of the Michaelis-Menten equation over the time course of the reactions, assuming phosphodiesterase was activated as a step. The kinetic parameters extracted from reaction progress curves were consistent with those derived from analysis of the initial velocity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
Light and GTP-dependent cyclic GMP phosphodiesterase activation of rod disk membranes is rapidly quenched by ATP. Maximum speed of this effect occurs only with the weakest bleaches. Though it has been proposed that ATP mediates its effect through rapid phosphorylation of bleached rhodopsin, previous workers have found phosphorylation kinetics too slow by more than an order of magnitude to be causal in quenching of cyclic GMP phosphodiesterase activation. In this report, we use preparations retaining more endogenous rhodopsin kinase, higher specific activity ATP, and cyclic GMP phosphodiesterase quenching conditions to show that ATP-dependent multiple phosphorylation of rhodopsin at very weak bleaches (10(-5)) is complete in less than 2 s, easily compatible with cyclic GMP phosphodiesterase quench times of 4 s measured under identical conditions. Thus, it seems likely that previous efforts to achieve high 32P counts by using large bleaches have produced conditions of substrate saturation where much longer times to completion are caused by a very large ratio of substrate to enzyme velocity. Such conditions are not appropriately compared to those that support rapid quenching. We conclude that the speed of rhodopsin phosphorylation is, in fact, adequate to explain ATP quenching of cyclic GMP phosphodiesterase activation.  相似文献   
10.
Cyclic GMP phosphodiesterase (PDE) in rod disk membranes has three subunits of molecular weight 88 000 (alpha), 84 000 (beta), and 13 000 (gamma). Physiological activation of the enzyme by light is mediated by a GTP binding protein (G protein). The enzyme can also be activated by controlled digestion with trypsin, which destroys the gamma subunit, leaving the activated enzyme as PDE alpha beta [Hurley, J. B., & Stryer, L. (1982) J. Biol. Chem. 257, 11094-11099]. Addition of purified gamma subunit to PDE alpha beta inhibited the enzyme fully. This suggested the possibility that G protein could also activate PDE by removing the gamma subunit and leaving the active enzyme in the form of PDE alpha beta. Should this be true, the properties of light- and trypsin-activated enzymes should be comparable. We found this not to be the case. The Km of light-activated enzyme for cyclic GMP was about 0.9-1.4 mM while that of trypsin-activated enzyme was about 140 microM. The cyclic AMP Km was also different for the two enzymes: 6.7 mM for light-activated enzyme and 2.0 mM for trypsin-activated enzyme. The inhibition of both enzymes by the addition of purified gamma subunit also differed significantly. Trypsin-activated enzyme was fully inhibited by the addition of about 200 nM gamma, but light-activated enzyme could not be fully inhibited even with 2600 nM inhibitor subunit. The Ki of the trypsin-activated enzyme for gamma was 15 nM and of the light-activated enzyme 440 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号