首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   20篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   8篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   5篇
  1973年   2篇
  1967年   1篇
  1961年   2篇
  1958年   1篇
  1954年   1篇
排序方式: 共有131条查询结果,搜索用时 31 毫秒
1.
2.
The 70-kilodalton heat shock protein (hsp70) family of molecular chaperones, which contains both stress-inducible and normally abundant constitutive members, is highly conserved across distantly related taxa. Analysis of this protein family in individuals from an outbred population of tropical topminnows, Poeciliopsis gracilis, showed that while constitutive hsp70 family members showed no variation in protein isoforms, inducibly synthesized hsp70 was polymorphic. Several species of Poeciliopsis adapted to desert environments exhibited lower levels of inducible hsp70 polymorphism than the tropical species, but constitutive forms were identical to those in P. gracilis, as they were in the confamilial species Gambusia affinis. These differences suggest that inducible and constitutive members of this family are under different evolutionary constraints and may indicate differences in their function within the cell. Also, northern desert species of Poeciliopsis synthesize a subset of the inducible hsp70 isoforms seen in tropical species. This distribution supports the theory that ancestral tropical fish migrated northward and colonized desert streams; the subsequent decrease in variation of inducible hsp70 may have been due to genetic drift or a consequence of adaptation to the desert environment. Higher levels of variability were found when the 30- kilodalton heat shock protein (hsp30) family was analyzed within different strains of two desert species of Poeciliopsis and also in wild-caught individuals of Gambusia affinis. In both cases the distribution of hsp30 isoform diversity was similar to that seen previously with allozyme polymorphisms.   相似文献   
3.
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase.  相似文献   
4.
The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homologous genes (Hcr9-4s) at this locus. Cf-4 was identified by molecular analysis of rare Cf-4/Cf-9 disease-sensitive recombinants and by complementation analysis. The analysis did not exclude the possibility that an additional gene(s) located distal to Cf-4 may also confer resistance to C. fulvum. We demonstrate that a number of Dissociation-tagged Cf-4 mutants, identified on the basis of their insensitivity to Avr4, are still resistant to infection by C. fulvum race 5. Molecular analysis of 16 Cf-4 mutants, most of which have small chromosomal deletions in this region, suggested the additional resistance specificity is encoded by Hcr9-4E. Hcr9-4E recognizes a novel C. fulvum avirulence determinant that we have designated Avr4E.  相似文献   
5.
Human cytomegalovirus (HCMV)-specific CD8+ cytotoxic T lymphocytes (CTL) appear to play an important role in the control of virus replication and in protection against HCMV-related disease. We have previously reported high frequencies of memory CTL precursors (CTLp) specific to the HCMV tegument protein pp65 in the peripheral blood of healthy virus carriers. In some individuals, the CTL response to this protein is focused on only a single epitope, whereas in other virus carriers CTL recognized multiple epitopes which we identified by using synthetic peptides. We have analyzed the clonal composition of the memory CTL response to four of these pp65 epitopes by sequencing the T-cell receptors (TCR) of multiple independently derived epitope-specific CTL clones, which were derived by formal single-cell cloning or from clonal CTL microcultures. In all cases, we have observed a high degree of clonal focusing: the majority of CTL clones specific to a defined pp65 peptide from any one virus carrier use only one or two different TCRs at the level of the nucleotide sequence. Among virus carriers who have the same major histocompatibility complex (MHC) class I allele, we observed that CTL from different donors that recognize the same peptide-MHC complex often used the same Vβ segment, although other TCR gene segments and CDR3 length were not in general conserved. We have also examined the clonal composition of CTL specific to pp65 peptides in asymptomatic human immunodeficiency virus-infected individuals. We have observed a similarly focused peptide-specific CTL response. Thus, the large population of circulating HCMV peptide-specific memory CTLp in virus carriers in fact contains individual CTL clones that have undergone extensive clonal expansion in vivo.

CD8+ cytotoxic T lymphocytes (CTL) recognize virus-infected cells via the T-cell receptor (TCR), an αβ heterodimer that has specificity for the peptide antigen presented by major histocompatibility complex (MHC) class I molecules. During T-cell development in the thymus, the TCR β-chain is constructed by rearrangement of variable (V), diversity (D), and joining (J) gene segments, and the α-chain by rearrangement of V and J segments. Additional diversity is generated by imperfect joining of these segments, exonucleotide nibbling at the joins, and addition of non-germ line-encoded N-region nucleotides (25). The regions spanning the V-D-J and V-J joins constitute the hypervariable CDR3 regions which are thought to interact with the middle of the bound peptide and to account for approximately 50% of the TCR’s interaction with peptide (14, 15, 20). The α- and β-chain complementarity determining regions CDR1, which reside within the TCR V segments, are thought to interact with the N and C termini of a peptide that is bound to MHC. By contrast, Vα and Vβ CDR2s are thought to interact predominantly with the MHC itself (14, 15).Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that infects between 60 and 90% of individuals, depending on the population studied. After primary HCMV infection, the virus persists lifelong in a latent state in cells of the myeloid lineage and under the control of the immune system (5). HCMV reactivation can, however, cause serious disease in immunocompromised individuals, such as patients with advanced human immunodeficiency virus (HIV) infection (30) and patients who have undergone bone marrow transplantation (33). Evidence from animal models (32) and from studies of immunosuppressed humans (39) indicates that virus-specific CD8+ CTL have a role in protection against CMV disease.We previously studied in detail the HCMV-specific CTL response in healthy virus carriers. All seropositive donors had high frequencies of MHC-restricted HCMV-specific memory CTL precursors in peripheral blood and strongly recognized one of the viral tegument proteins, pp65. In some donors, the CTL response to this protein was highly focused, recognizing only a single epitope within pp65, whereas in others the CTL recognized multiple pp65 peptides (41 and unpublished data).The aim of this study was to examine the clonal composition of the memory CTL response to HCMV pp65 by determining how many different CTL clones are involved in the recognition of a given pp65 peptide. In order to do this, we analyzed the TCR α- and β-chain usage of multiple independently derived peptide-specific CTL clones from healthy virus carriers.Previous studies have examined the heterogeneity of the CTL response to other human virus infections within single subjects (2, 8, 11, 18, 19, 22, 38) or between different donors (2, 6, 8, 11, 23, 38). In the most extreme cases, a very high degree of TCR focusing has been seen: in a study of one HIV-positive individual’s CTL response to an HLA-B14-restricted HIV env peptide, the same TCR was used by 9 of 10 peptide-specific CTL clones, each derived at different time points over the course of 36 months (22). Similarly, multiple independent CTL clones specific to an HLA-B8-restricted Epstein-Barr virus (EBV) peptide derived from one virus carrier at one time point all used the same TCR (2). The CTL response to different human T-lymphotropic virus type 1 (HTLV-1) peptides has been observed to be oligoclonal within individual donors (38). However, in a variety of other human and mouse viral infections within a given individual, the repertoire of CTL specific for a given peptide has been highly heterogeneous (8, 11, 18, 19).The TCRs of CTL obtained from different donors that recognize the same peptide-MHC complex often show some conservation of gene segment usage, although they differ in hypervariable sequence. For example, Vβ segments and certain β-chain CDR3 motifs were conserved between TCR that recognized an HLA-A2-restricted influenza virus peptide in CTL clones derived from different donors (23); the same phenomenon has been seen for an HLA-B27 restricted influenza virus peptide (6) and an HLA-A11-restricted EBV peptide (8). A much higher degree of TCR conservation has also been seen; the same TCR α- and β-chain protein sequences were used by CTL clones from four of five unrelated donors that recognized an HLA-B8 restricted EBV peptide (2). In the case of HTLV-1, CTL from different donors that were specific to the same peptide used largely unrelated TCR (38).For all of the human viruses so far studied, the clonal composition of virus-specific CTL has only been examined for a very few viral peptide-MHC combinations, sometimes in only one donor or at only one time point. In this study, we have therefore examined multiple CTL clones specific to a total of four pp65 peptides, all restricted by three different HLA alleles. We have derived these clones from six healthy virus carriers at one to four time points up to 18 months apart. To identify CTL clonotypes for longitudinal studies and to determine whether HIV infection modifies the clonal composition of HCMV-specific CTL, we have also examined pp65-specific memory CTL in two asymptomatic HIV-infected subjects who are HCMV seropositive. For any given individual, whether HIV seropositive or seronegative, our results indicate that the memory CTL response to individual HCMV pp65 epitopes is highly focused and contains CTL clones that have undergone extensive expansion in vivo.  相似文献   
6.
Trends in coral cover are widely used to indicate the health of coral reefs but are costly to obtain from field survey over large areas. In situ studies of reflected spectra at the coral surface show that living and recently dead colonies can be distinguished. Here, we investigate whether such spectral differences can be detected using an airborne remote sensing instrument. The Compact Airborne Spectrographic Imager (Itres Research Ltd, Canada) was flown in two configurations: 10 spectral bands with 1-m2 pixels and 6 spectral bands with 0.25-m2 pixels. First, we show that an instrument with 10 spectral bands possesses adequate spectral resolution to distinguish living Porites, living Pocillopora spp., partially dead Porites, recently dead Porites (total colony mortality within 6 months), old dead (>6 months) Porites, Halimeda spp., and coralline red algae when there is no water column to confuse spectra. All substrata were distinguished using fourth-order spectral derivatives around 538 nm and 562 nm. Then, at a shallow site (Tivaru) at Rangiroa Atoll, Tuamotu Archipelago (French Polynesia), we show that live and dead coral can be distinguished from the air to a depth of at least 4 m using first- and fourth-order spectral derivatives between 562–580 nm. However, partially dead and recently dead Porites colonies could not be distinguished from an airborne platform. Spectral differences among substrata are then exploited to predict the cover of reef substrata in ten 25-m2 plots at nearby Motu Nuhi (max depth 8 m). The actual cover in these plots was determined in situ using quadrats with a 0.01-m2 grid. Considerable disparity occurred between field and image-based measures of substrate cover within individual 25-m2 quadrats. At this small scale, disparity, measured as the absolute difference in cover between field and remote-sensing methods, reached 25% in some substrata but was always less than 10% for living coral (99% of which consisted of Porites spp.). At the scale of the reef (all ten 25-m2 quadrats), however, disparities in percent cover between imagery and field data were less than 10% for all substrata and extremely low for some classes (e.g. <3% for living Porites, recently dead Porites and Halimeda). The least accurately estimated substrata were sand and coralline red algae, which were overestimated by absolute values 7.9% and 6.6%, respectively. The precision of sampling was similar for field and remote-sensing methods: field methods required 19 plots to detect a 10% difference in coral cover among three reefs with a statistical power of 95%. Remote-sensing methods required 21 plots. However, it took 1 h to acquire imagery over 92,500 m2 of reef, which represents 3,700 plots of 25 m2 each, compared with 3 days to survey 10 such plots underwater. There were no significant differences in accuracy between 1-m2 and 0.25-m2 image resolutions, suggesting that the advantage of using smaller pixels is offset by reduced spectral information and an increase in noise (noise was observed to be 1.6–1.8 times greater in 0.25-m2 pixels). We show that airborne remote sensing can be used to monitor coral and algal cover over large areas, providing that water is shallow and clear, and that brown fleshy macroalgae are scarce, that depth is known independently (e.g. from sonar survey).  相似文献   
7.
8.

Background  

Primary diagnostic cultures from patients with melioidosis demonstrate variation in colony morphology of the causative organism, Burkholderia pseudomallei. Variable morphology is associated with changes in the expression of a range of putative virulence factors. This study investigated the effect of B. pseudomallei colony variation on survival in the human macrophage cell line U937 and under laboratory conditions simulating conditions within the macrophage milieu. Isogenic colony morphology types II and III were generated from 5 parental type I B. pseudomallei isolates using nutritional limitation. Survival of types II and III were compared with type I for all assays.  相似文献   
9.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号