首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   5篇
  2019年   1篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Transgenic plants of the model legume Lotus japonicus were regenerated by hypocotyl transformation using a bar gene as a selectable marker. The bar encodes for Phosphinothricin Acetyl Transferase that detoxifies phosphinothricin (PPT), the active ingredient of herbicides such as Ignite (AgrEvo) and Basta (Hoechst). Transgenic L. japonicus plants resistant to PPT were positive upon PCR by bar gene-specific primers. In 5 out of 7 independent lines tested, PPT resistance segregated as a single dominant allele indicating a single T-DNA insertion into the plant genome. All regenerated plants were fertile and void of visible somaclonal abnormalities contrary to 14% infertility when antibiotic selectable markers were used. The lack of somaclonal variation, ease of PPT application and low cost of PPT makes this protocol an attractive alternative for the regeneration of transgenic L. japonicus. The production of PPT herbicide-resistant L. japonicus plants may have significant commercial applications in crop production.  相似文献   
2.
Previous grafting experiments have demonstrated that legume shoots play a critical role in symbiotic development of nitrogen-fixing root nodules by regulating nodule number. Here, reciprocal grafting experiments between the model legumes Lotus japonicus and Medicago truncatula were carried out to investigate the role of the shoot in the host-specificity of legume-rhizobia symbiosis and nodule type. Lotus japonicus is nodulated by Mesorhizobium loti and makes determinate nodules, whereas M. truncatula is nodulated by Sinorhizobium meliloti and makes indeterminate nodules. When inoculated with M. loti, L. japonicus roots grafted on M. truncatula shoots produced determinate nodules identical in appearance to those produced on L. japonicus self-grafted roots. Moreover, the hypernodulation phenotype of L. japonicus har1-1 roots grafted on wild-type M. truncatula shoots was restored to wild type when nodulated with M. loti. Thus, L. japonicus shoots appeared to be interchangeable with M. truncatula shoots in the L. japonicus root/M. loti symbiosis. However, M. truncatula roots grafted on L. japonicus shoots failed to induce nodules after inoculation with S. meliloti or a mixture of S. meliloti and M. loti. Instead, only early responses to S. meliloti such as root hair tip swelling and deformation, plus induction of the early nodulation reporter gene MtENOD11:GUS were observed. The results indicate that the L. japonicus shoot does not support normal symbiosis between the M. truncatula root and its microsymbiont S. meliloti, suggesting that an unidentified shoot-derived factor may be required for symbiotic progression in indeterminate nodules.  相似文献   
3.
Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5′ end and polyadenylated at its 3′ end. The 3′ nontranslated region (3′NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3′CSE) and a poly(A) tail. This 3′CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693–2704, 1997). Here, we demonstrate that the 3′-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3′NTR, we generated a battery of mutant genomes with mutations in the 3′NTR and tested their ability to generate infectious virus and undergo 3′ polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3′CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3′CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3′NTR. These results indicate the ability of alphavirus RNAs to undergo 3′ repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3′ end in the infected host cell. Most importantly, these results indicate the ability of alphavirus replication machinery to use a multitude of AU-rich RNA sequences abutted by a poly(A) motif as promoters for negative-sense RNA synthesis and genome replication in vivo. The possible roles of cytoplasmic polyadenylation machinery, terminal transferase-like enzymes, and the viral polymerase in the terminal repair processes are discussed.  相似文献   
4.
The symbiont isolated from root nodules of Phaseolus mungo L., a widely grown legume in India was identified as a Rhizobium sp. a Rhizobium sp. close to R. multihospitium based on a biochemical and 16S rRNA gene-based phylogenetic approach. This Rhizobium sp. was able to produce large amounts of extracellular polysaccharides (EPS) in a yeast extract mannitol (YEM) broth medium. Both growth and EPS production started simultaneously though each had different stationary phases. EPS production increased enormously with supplementation by the preferred carbon, nitrogen and vitamin sources. Attempts were made to optimize the cultural requirements for maximum growth and maximum EPS production. The EPS produced by the symbiont contained large amount of mannose together with small amounts of arabinose and xylose. The possible role of EPS production on the Rhizobium—root nodule symbiosis is briefly discussed.  相似文献   
5.
2-Deaminoactinomycin D (3a) and 2-deamino-2-nitroactinomycin D (2a) were prepared in one step from actinomycin D (1a, AMD) by reaction with nitrous acid. New DNA-binding (calf-thymus) data obtained by difference uv and CD spectra and ΔTm were presented. In vitro cell growth inhibitory activity of CCRF-CEM cells was also reported. The 2-deamino analog, 3a, does not bind to DNA strongly nor by intercalation of its chromophore. However, some binding with DNA was indicated by CD which is attributed only to hydrogen bondings of the peptides with the DNA helix; the affinity for binding is in the order 1a ? 2a > 3a. The 2-nitro analog, 2a, is a more potent agent against CCRF-CEM cells than the 2-deaminoactinomycin D, 3a; the potencies are in the order 1a > 2a ? 3a. Furthermore, the microsomes activate the analogs to free radical states which catalyze the production of superoxide, as indicated by electron paramagnetic resonance studies and oxygen consumption experiments.  相似文献   
6.

Background and Aims

Transgenics are used to demonstrate a causal relationship between ethylene insensitivity of a seedling legume plant, the level of ethylene receptor gene expression, lateral root growth and Mesorhizobium loti-induced nodule initiation.

Methods

Lotus japonicus plants expressing the dominant etr1-1 allele of the Arabidopsis thaliana gene encoding a well-characterized mutated ethylene receptor were created by stable Agrobacterium tumefaciens transformation. Single insertion, homozygous lines were characterized for symbiotic properties.

Key Results

Transgenic plants were ethylene insensitive as judged by the lack of the ‘Triple Response’, and their continued ability to grow and nodulate in the presence of inhibitory concentrations of ACC (1-aminocyclopropane-1-carboxylic acid; an ethylene precursor). Transgenic plants with high insensitivity to ACC had significantly fewer lateral roots and exhibited increased nodulation while showing no altered nitrate sensitivity or lack of systemic autoregulation. Whereas ACC-insensitive shoot growth and nodulation were observed in transformants, root growth was inhibited similarly to the wild type. Increased nodulation was caused by increased infection and a seven-fold increase in nodules developing between xylem poles. Bacteroid numbers per symbiosome increased about 1·7-fold in ethylene-insensitive plants.

Conclusions

The study further demonstrates multiple roles for ethylene in nodule initiation by influencing root cell infections and radial positioning, independent of autoregulation and nitrate inhibition of nodulation.Key words: Ethylene insensitivity, Lotus japonicus, symbiosis, phytohormone, nodulation, signal transduction  相似文献   
7.
8.
Sedentary plant-parasitic nematodes engage in complex interactions, and induce specialized feeding structures by redirecting plant developmental pathways, and parallels have been observed with rhizobial nodule development on legumes. A model legume would greatly facilitate a better understanding of the differences between parasitic (nematode) and mutualistic (rhizobia and mycorrhizae) symbioses, and we have developed Lotus japonicus as such a model. Conditions for efficient parasitism by root-knot nematode (Meloidogyne spp.) of the widely used Lotus "Gifu" ecotype were established. Features of Lotus biology, such as thin and translucent roots, proved ideal for monitoring the progress of nematode infection both on live specimens and post-staining. We examined L. japonicus mutants with nodulation phenotypes. One, har1, which is a hypernodulated mutant defective in a CLAVATA1-like receptor kinase gene, was found to be hyperinfected by M. incognita. However, another hypernodulated Lotus mutant exhibited the same level of M. incognita infection as wild-type plants. We also established conditions for infection of Lotus by soybean cyst nematode (Heterodera glycines). In contrast to the response to root-knot nematode, the Gifu ecotype is resistant to H. glycines, and elicits a hypersensitive response. This pattern of resistance recapitulates that seen on nematode-resistant soybean plants. We conclude that L. japonicus is a powerful model legume for studying compatible and incompatible plant-nematode interactions.  相似文献   
9.
This paper is an attempt to design 4-anilinoquinazoline compounds having promising anticancer activities against epidermal growth factor (EGFR) kinase inhibition, using virtual combinatorial library approach. Partial least squares method has been applied for the development of a quantitative structure–activity relationship (QSAR) model based on training and test set approaches. The partial least squares model showed some interesting results in terms of internal and external predictability against EGFR kinase inhibition for such type of anilinoquinazoline derivatives. In virtual screening study, out of 4860 compounds in chemical library, 158 compounds were screened and finally, 10 compounds were selected as promising EGFR kinase inhibitors based on their predicted activities from the QSAR model. These derivatives were subjected to molecular docking study to investigate the mode of binding with the EGFR kinase, and the two compounds (ID 3639 and 3399) showing similar type of docking score and binding patterns with that of the existing drug molecules like erlotinib were finally reported.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号