首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Recent studies have supported close interactions between language and action-related processes, suggesting comparable neural mechanisms. However, relatively little is known about the semantics involved in action planning. The present study investigated the activation of semantic knowledge in meaningful actions by recording event-related potentials (ERPs). Subjects prepared meaningful or meaningless actions with objects and made a semantic categorization response before executing the action. Words presented could be either congruent or incongruent with respect to the goal of the action. Preparation of meaningful actions elicited a larger anterior N400 for words incongruent to the present action goal as compared to congruent words, while no N400 effect was found when subjects prepared meaningless actions. These findings indicate that the preparation of meaningful actions with objects is accompanied by the activation of semantic information representing the usual action goals associated with those objects.  相似文献   
2.
Humans recognize both the movement (physical) goals and action (conceptual) goals of individuals with whom they are interacting. Here, we assessed whether spontaneous recognition of others’ goals depends on whether the observers control their own behavior at the movement or action level. We also examined the relationship between individual differences in empathy and ASD-like traits, and the processing of other individual’s movement and action goals that are known to be encoded in the “mirroring” and “mentalizing” brain networks. In order to address these questions, we used a computer-based card paradigm that made it possible to independently manipulate movement and action congruency of observed and executed actions. In separate blocks, participants were instructed to select either the right or left card (movement-control condition) or the higher or lower card (action-control condition), while we manipulated action- and movement-congruency of both actors’ goals. An action-congruency effect was present in all conditions and the size of this effect was significantly correlated with self-reported empathy and ASD-like traits. In contrast, movement-congruency effects were only present in the movement-control block and were strongly dependent on action-congruency. These results illustrate that spontaneous recognition of others’ behavior depends on the control scheme that is currently adopted by the observer. The findings suggest that deficits in action recognition are related to abnormal synthesis of perceived movements and prior conceptual knowledge that are associated with activations in the “mirroring” and “mentalizing” cortical networks.  相似文献   
3.
As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4 protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family.  相似文献   
4.
5.
A large body of work has focused on children’s ability to attribute mental states to other people, and whether these abilities are influenced by the extent and nature of children’s social interactions. However, it remains largely unknown which developmental factors shape children’s ability to influence the mental states of others. Building on the suggestion that collaborative experiences early in life might be crucial for the emergence of mental coordination abilities, here we assess the relative contribution of social exposure to familial and non-familial agents on children’s communicative adjustments to their mental model of an addressee (‘audience design’). During an online interactive game, five-year-olds spontaneously organized their non-verbal communicative behaviors according to their beliefs about an interlocutor. The magnitude of these communicative adjustments was predicted by the time spent at daycare, from birth until four years of age, over and above effects of familial social environment. These results suggest that the degree of non-familial social interaction early in life modulates the influence that children’s beliefs have on their referential communicative behavior.  相似文献   
6.
Complementary systems for understanding action intentions   总被引:7,自引:0,他引:7  
How humans understand the intention of others' actions remains controversial. Some authors have suggested that intentions are recognized by means of a motor simulation of the observed action with the mirror-neuron system [1-3]. Others emphasize that intention recognition is an inferential process, often called "mentalizing" or employing a "theory of mind," which activates areas well outside the motor system [4-6]. Here, we assessed the contribution of brain regions involved in motor simulation and mentalizing for understanding action intentions via functional brain imaging. Results show that the inferior frontal gyrus (part of the mirror-neuron system) processes the intentionality of an observed action on the basis of the visual properties of the action, irrespective of whether the subject paid attention to the intention or not. Conversely, brain areas that are part of a "mentalizing" network become active when subjects reflect about the intentionality of an observed action, but they are largely insensitive to the visual properties of the observed action. This supports the hypothesis that motor simulation and mentalizing have distinct but complementary functions for the recognition of others' intentions.  相似文献   
7.
We review a series of behavioural experiments on imitation in children and adults that test the predictions of a new theory of imitation. Most of the recent theories of imitation assume a direct visual-to-motor mapping between perceived and imitated movements. Based on our findings of systematic errors in imitation, the new theory of goal-directed imitation (GOADI) instead assumes that imitation is guided by cognitively specified goals. According to GOADI, the imitator does not imitate the observed movement as a whole, but rather decomposes it into its separate aspects. These aspects are hierarchically ordered, and the highest aspect becomes the imitator's main goal. Other aspects become sub-goals. In accordance with the ideomotor principle, the main goal activates the motor programme that is most strongly associated with the achievement of that goal. When executed, this motor programme sometimes matches, and sometimes does not, the model's movement. However, the main goal extracted from the model movement is almost always imitated correctly.  相似文献   
8.
From early in life, infants watch other people''s actions. How do young infants come to make sense of actions they observe? Here, we review empirical findings on the development of action understanding in infancy. Based on this review, we argue that active action experience is crucial for infants'' developing action understanding. When infants execute actions, they form associations between motor acts and the sensory consequences of these acts. When infants subsequently observe these actions in others, they can use their motor system to predict the outcome of the ongoing actions. Also, infants come to an understanding of others’ actions through the repeated observation of actions and the effects associated with them. In their daily lives, infants have plenty of opportunities to form associations between observed events and learn about statistical regularities of others’ behaviours. We argue that based on these two forms of experience—active action experience and observational experience—infants gradually develop more complex action understanding capabilities.  相似文献   
9.
Detecting errors in other's actions is of pivotal importance for joint action, competitive behavior and observational learning. Although many studies have focused on the neural mechanisms involved in detecting low-level errors, relatively little is known about error-detection in everyday situations. The present study aimed to identify the functional and neural mechanisms whereby we understand the correctness of other's actions involving well-known objects (e.g. pouring coffee in a cup). Participants observed action sequences in which the correctness of the object grasped and the grip applied to a pair of objects were independently manipulated. Observation of object violations (e.g. grasping the empty cup instead of the coffee pot) resulted in a stronger P3-effect than observation of grip errors (e.g. grasping the coffee pot at the upper part instead of the handle), likely reflecting a reorienting response, directing attention to the relevant location. Following the P3-effect, a parietal slow wave positivity was observed that persisted for grip-errors, likely reflecting the detection of an incorrect hand-object interaction. These findings provide new insight in the functional significance of the neurophysiological markers associated with the observation of incorrect actions and suggest that the P3-effect and the subsequent parietal slow wave positivity may reflect the detection of errors at different levels in the action hierarchy. Thereby this study elucidates the cognitive processes that support the detection of action violations in the selection of objects and grips.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号