首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有47条查询结果,搜索用时 46 毫秒
1.
BackgroundThe two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission.ConclusionProkaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His–Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His–Asp–His–Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system''s evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.  相似文献   
2.
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.  相似文献   
3.
Zygotes of the brown alga Fucus distichus (L.) Powell develop polarity prior to the first embryonic cell division and retain a pattern of asymmetric growth during early embryogenesis. In order to identify F. distichus polypeptides secreted during asymmetric cell growth, we used a functional assay in Saccharomyces cerevisiae to screen a cDNA library generated from asymmetrically growing Fucus embryos for sequences encoding polypeptides that function as signal peptides for secretion. We isolated and sequenced 222 plasmids containing Fucus cDNAs encoding signal peptide activity. The cDNA inserts from these plasmids were translated in silico into 244 potential polypeptide sequences, 169 of which are predicted to contain signal peptides. BlastP analysis of the Fucus sequences revealed similarity between many Fucus proteins and cell surface proteins that function in development in other eukaryotes, including epidermal growth factor (EGF)-like repeat-containing proteins, plant leucine-rich repeat (LRR)-receptor kinases, and algal -1, 3-exoglucanase. However, most of the isolated Fucus polypeptides lack similarity to known proteins. The isolation of cDNAs encoding secreted Fucus proteins provides an important step toward characterizing cell surface proteins important for asymmetric organization and growth in fucoid embryos.Abbreviations ECM extracellular matrix - EGF epidermal growth factor - ER endoplasmic reticulum - LRR leucine-rich repeat - SST signal sequence trap - WAK wall-associated kinase  相似文献   
4.
5.
The two-component system (TCS), which works on the principle of histidine-aspartate phosphorelay signaling, is known to play an important role in diverse physiological processes in lower organisms and has recently emerged as an important signaling system in plants. Employing the tools of bioinformatics, we have characterized TCS signaling candidate genes in the genome of Oryza sativa L. subsp. japonica. We present a complete overview of TCS gene families in O. sativa, including gene structures, conserved motifs, chromosome locations, and phylogeny. Our analysis indicates a total of 51 genes encoding 73 putative TCS proteins. Fourteen genes encode 22 putative histidine kinases with a conserved histidine and other typical histidine kinase signature sequences, five phosphotransfer genes encoding seven phosphotransfer proteins, and 32 response regulator genes encoding 44 proteins. The variations seen between gene and protein numbers are assumed to result from alternative splicing. These putative proteins have high homology with TCS members that have been shown experimentally to participate in several important physiological phenomena in plants, such as ethylene and cytokinin signaling and phytochrome-mediated responses to light. We conclude that the overall architecture of the TCS machinery in O. sativa and Arabidopsis thaliana is similar, and our analysis provides insights into the conservation and divergence of this important signaling machinery in higher plants.  相似文献   
6.
Two-component signaling pathways involve sensory histidine kinases (HK), histidine phosphotransfer proteins (HpT) and response regulators (RR). Recent advancements in genome sequencing projects for a number of plant species have established the TCS family to be multigenic one. In plants, HKs operate through the His–Asp phosphorelay and control many physiological and developmental processes throughout the lifecycle of plants. Despite the huge diversity reported for the structural features of the HKs, their functional redundancy has also been reported via mutant approach. Several sensory HKs having a CHASE domain, transmembrane domain(s), transmitter domain and receiver domain have been reported to be involved in cytokinin and ethylene signaling. On the other hand, there are also increasing evidences for some of the sensory HKs to be performing their role as osmosensor, clearly indicating toward a possible cross-talk between hormone and stress responsive cascades. In this review, we bring out the latest knowledge about the structure and functions of histidine kinases in cytokinin and ethylene signaling and their role(s) in development and the regulation of environmental stress responses.  相似文献   
7.
8.
Earlier we have shown the role of glyoxalase overexpression in conferring salinity tolerance in transgenic tobacco. We now demonstrate the feasibility of same in a crop like rice through overproduction of glyoxalase II. The rice glyoxalase II was cloned in pCAMBIA1304 and transformed into rice (Oryza sativa cv PB1) via Agrobacterium. The transgenic plants showed higher constitutive activity of glyoxalase II that increased further upon salt stress, reflecting the upregulation of endogenous glyoxalase II. The transgenic rice showed higher tolerance to toxic concentrations of methylglyoxal (MG) and NaCl. Compared with non-transgenics, transgenic plants at the T1 generation exhibited sustained growth and more favorable ion balance under salt stress conditions. Sneh L. Singla-Pareek and Sudesh Kumar Yadav have contributed equally to this work.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号