首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   7篇
  2022年   1篇
  2021年   4篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   10篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
1.
2.
The molecular cloning and nucleotide sequence of a cDNA clone (pR SOD) for rat CuZn superoxide dismutase (CuZnSOD) is reported. Nucleotide sequence homology with human superoxide dismutase is 86% for the coding region and 71% for the 3' untranslated region. The deduced amino acid sequence is given and the homologies with the sequences reported for other species are presented. Northern blot analysis of total RNA from various rat and mouse tissues and from two mouse cell lines show that pR SOD hybridizes with one mRNA species of about 0.7 kb. The amount of CuZnSOD mRNA in each tissue, measured by densitometry of the Northern blot autoradiograms, correlates with the enzymatic activity based on protein content. These results indicate that the control of CuZnSOD activity in mammalian tissues is largely dependent on the regulation of CuZnSOD mRNA levels. In human liver, fibroblasts and FG2 hepatoma cells, two CuZnSOD mRNAs (0.7 kb and 0.9 kb) are observed. The level of CuZnSOD mRNA in FG2 is 25% that of the liver and four times more abundant than in fibroblasts.  相似文献   
3.
To generate new chromosome 21 markers in a region that is critical for the pathogenesis of Down syndrome (D21S55-MX1), we used pulsed field gel electrophoresis (PFGE) to isolate a 600-kb NruI DNA fragment from the WA17 hybrid cell line, which has retained chromosome 21 as the only human material. This fragment, which contains the oncogene ETS2, was used to construct a partial genomic library. Among the 14 unique sequences that were isolated, 3 were polymorphic markers and contained sequences that are conserved in mammals. Five of these markers mapped on the ETS2-containing NruI fragment and allowed us to define an 800-kb high-resolution PFGE map.  相似文献   
4.
Aneusomie de recombinaison arose from a familial pericentric inversion of a chromosome 21. Two female patients had a typical Down syndrome; one of them had slight psychomotor retardation. There was partial trisomy 21q2109----qter in these two patients but ZnCu SOD activity was normal.  相似文献   
5.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
6.
The Fenton-type reaction between ferrous diethylenetriamine pentaacetic acid (Fe2+-DTPA, 50–200 μM) and H2O2 (20–1000 μM) in phosphate buffer at pH 7.0 results in consumption of dissolved oxygen. This observation differs from many prior reports that oxygen is liberated when more concentrated solutions of H2O2 are decomposed by iron salts. The rate and total quantity of oxygen consumed were dependent upon the concentrations of ferrous chelate, H2O2, and excess DTPA. Evidence is provided that both the ferrous-DTPA chelate and free DTPA can participate in the oxygen-consuming reactions. Oxygen was also consumed during the Fenton reaction between ferrous ions and H2O2 when DTPA and phosphate buffer were omitted. Under these conditions, oxygen evolution was observed at higher H2O2 concentrations (e.g., 400 μM). The consumption of oxygen during the Fenton-type reaction of an iron chelate at neutral pH may be relavant to events that take place in biologic systems.  相似文献   
7.
8.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
9.
10.

Introduction

To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years.

Methods

In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years.

Results

68% of the patients had accelerated hand BMD loss (>-0.003 g/cm2) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage.

Conclusions

In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号