首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.  相似文献   
2.
Selected pyridinol analogues of the experimental neuroprotective drug idebenone have been synthesized and evaluated as antioxidants capable of preserving mitochondrial function. The compounds, having a different redox core but the same side chain as idebenone, exhibited a range of potencies, reflecting differences in their structures. The results obtained provide guidance in the design of such analogues with improved properties. Analogues were identified that have significantly improved antioxidant activity compared with idebenone in cultured lymphocytes, and which exhibit lesser inhibition of the electron transport chain.  相似文献   
3.
Although the mechanism by which a kinesin-1 molecule moves individually along a microtubule is quite well-understood, the way that many kinesin-1 motor proteins bound to the same cargo move together along a microtubule is not. We identified a 60-amino-acid-long domain, termed Hinge 1, in kinesin-1 from Drosophila melanogaster that is located between the coiled coils of the neck and stalk domains. Its deletion reduces microtubule gliding speed in multiple-motor assays but not single-motor assays. Hinge 1 thus facilitates the cooperation of motors by preventing them from impeding each other. We addressed the structural basis for this phenomenon. Video-microscopy of single microtubule-bound full-length motors reveals the sporadic occurrence of high-compliance states alternating with longer-lived, low-compliance states. The deletion of Hinge 1 abolishes transitions to the high-compliance state. Based on Fourier transform infrared, circular dichroism, and fluorescence spectroscopy of Hinge 1 peptides, we propose that low-compliance states correspond to an unexpected structured organization of the central Hinge 1 region, whereas high-compliance states correspond to the loss of that structure. We hypothesize that strain accumulated during multiple-kinesin motility populates the high-compliance state by unfolding helical secondary structure in the central Hinge 1 domain flanked by unordered regions, thereby preventing the motors from interfering with each other in multiple-motor situations.  相似文献   
4.
Abnormal blood cell production is associated with chronic kidney disease (CKD) and cardiovascular disease (CVD). Bone-derived FGF-23 (fibroblast growth factor-23) regulates phosphate homeostasis and bone mineralization. Genetic deletion of Fgf-23 in mice (Fgf-23−/−) results in hypervitaminosis D, abnormal mineral metabolism, and reduced lymphatic organ size. Elevated FGF-23 levels are linked to CKD and greater risk of CVD, left ventricular hypertrophy, and mortality in dialysis patients. However, whether FGF-23 is involved in the regulation of erythropoiesis is unknown. Here we report that loss of FGF-23 results in increased hematopoietic stem cell frequency associated with increased erythropoiesis in peripheral blood and bone marrow in young adult mice. In particular, these hematopoietic changes are also detected in fetal livers, suggesting that they are not the result of altered bone marrow niche alone. Most importantly, administration of FGF-23 in wild-type mice results in a rapid decrease in erythropoiesis. Finally, we show that the effect of FGF-23 on erythropoiesis is independent of the high vitamin D levels in these mice. Our studies suggest a novel role for FGF-23 in erythrocyte production and differentiation and suggest that elevated FGF-23 levels contribute to the pathogenesis of anemia in patients with CKD and CVD.  相似文献   
5.
6.
The enzymes decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-β-D-ribose-2-epimerase (DprE2) catalyze epimerization of decaprenylphosporyl ribose (DPR) todecaprenylphosporyl arabinose (DPA) and are critical for the survival of Mtb. Crystal structures of DprE1 so far reported display significant disordered regions and no structural information is known for DprE2. We used homology modeling, protein threading, molecular docking and dynamics studies to investigate the structural and dynamic features of Mtb DprE1 and DprE2 and DprE1-DprE2 complex. A three-dimensional model for DprE2 was generated using the threading approach coupled with ab initio modeling. A 50 ns simulation of DprE1 and DprE2 revealed the overall stability of the structures. Principal Component Analysis (PCA) demonstrated the convergence of sampling in both DprE1 and DprE2. In DprE1, residues in the 269–330 area showed considerable fluctuation in agreement with the regions of disorder observed in the reported crystal structures. In DprE2, large fluctuations were detected in residues 95–113, 146–157, and 197–226. The study combined docking and MD simulation studies to map and characterize the key residues involved in DprE1-DprE2 interaction. A 60 ns MD simulation for DprE1-DprE2 complex was also performed. Analysis of data revealed that the docked complex is stabilized by H-bonding, hydrophobic and ionic interactions. The key residues of DprE1 involved in DprE1-DprE2 interactions belong to the disordered region. We also examined the docked complex of DprE1-BTZ043 to investigate the binding pocket of DprE1 and its interactions with the inhibitor BTZ043. In summary, we hypothesize that DprE1-DprE2 interaction is crucial for the synthesis of DPA and DprE1-DprE2 complex may be a new therapeutic target amenable to pharmacological validation. The findings have important implications in tuberculosis (TB) drug discovery and will facilitate drug development efforts against TB.  相似文献   
7.
8.
9.
Oxidative stress is one of the major causes of degenerative conditions occurring at cellular level with serious health implications. This study was aimed at investigating the antioxidative potentials of probiotic lactobacilli of Indian gut origin and their ability to augment antioxidant defense enzyme systems in the host cells under oxidative stress conditions. A total of 39 Lactobacillus cultures were assessed for their resistance against reactive oxygen species. Most of the cultures were moderately to strongly resistant towards 0.4 mM H(2)O(2). The Lactobacillus isolate CH4 was the most H(2)O(2) resistant culture with only 0.06 log cycle reduction. Majority of the cultures demonstrated high resistance towards hydroxyl ions and Lp21 was the most resistant with log count reduction of 0.20 fold only. Almost all the cultures were also quite resistant to superoxide anions. Lp21 also showed the highest superoxide dismutase content (0.8971 U). Amongst the 39 cultures, Lactobacillus spp. S3 showed the highest total antioxidative activity of 77.85 ± 0.13 % followed by Lp55 (56.1 ± 1.2 %) in terms of per cent inhibition of linolenic acid oxidation. Lp9 up-regulated the expression of superoxide dismutase 2 gene in HT-29 cells both at 0.1 mM (1.997 folds) and 1.0 mM H(2)O(2) (2.058 folds) concentrations. In case of glutathione peroxidase-1, Lp9, Lp91 and Lp55 showed significant (P < 0.001) up-regulation in the gene expression to the level of 5.451, 8.706 and 10.083 folds, respectively when HT-29 was challenged with 0.1 mM H(2)O(2). The expression of catalase gene was also significantly up-regulated by all the cultures at 0.1 mM H(2)O(2) conditions. It can be concluded that the antioxidative efficacy of the putative probiotic lactobacilli varied considerably between species and strains and the potential strains can be explored as prospective antioxidants to manage oxidative stress induced diseases.  相似文献   
10.
The visual photoreceptor rhodopsin is a prototypical class I (rhodopsin-like) G protein-coupled receptor. Photoisomerization of the covalently bound ligand 11-cis-retinal leads to restructuring of the cytosolic face of rhodopsin. The ensuing protonation of Glu-134 in the class-conserved D(E)RY motif at the C-terminal end of transmembrane helix-3 promotes the formation of the G protein-activating state. Using transmembrane segments derived from helix-3 of bovine rhodopsin, we show that lipid protein interactions play a key role in this cytosolic “proton switch.” Infrared and fluorescence spectroscopic pKa determinations reveal that the D(E)RY motif is an autonomous functional module coupling side chain neutralization to conformation and helix positioning as evidenced by side chain to lipid headgroup Foerster resonance energy transfer. The free enthalpies of helix stabilization and hydrophobic burial of the neutral carboxyl shift the side chain pKa into the range typical of Glu-134 in photoactivated rhodopsin. The lipid-mediated coupling mechanism is independent of interhelical contacts allowing its conservation without interference with the diversity of ligand-specific interactions in class I G protein-coupled receptors.G protein-coupled receptors (GPCRs)2 are hepta-helical membrane proteins that couple a large variety of extracellular signals to cell-specific responses via activation of G proteins. In the visual photoreceptor rhodopsin, a prototypical class I GPCR (1, 2), molecular activation processes can be monitored in real time by spectroscopic assays and analyzed in the context of several crystal structures (38). The primary signal for rhodopsin is the 11-cis to all-trans photoisomerization of retinal covalently bound to the apoprotein opsin through a protonated Schiff base to Lys296. Current models converge toward a picture in which “microdomains” act as conformational switches that are coupled to different degrees to the primary activation process. Two activating “proton switches” have been identified (9) as follows: breakage of an intramolecular salt bridge (10) by transfer of the Schiff base proton to its counter ion Glu-113 (11) is followed by movement of helix-6 (H6) (12, 13) in the metarhodopsin IIa (MIIa) to MIIb transition. The MIIb state takes up a proton at Glu-134 (14) in the class-conserved D(E)RY motif at the C-terminal end of helix-3 (H3) leading to the MIIbH+ intermediate (15, 16), which activates transducin (Gt), the G protein of the photoreceptor cell. Glu-134 regulates the pH sensitivity of receptor signaling (17) in membranes as reviewed previously (18), and in complex with Gt the protonated state of the carboxyl group becomes stabilized (19). This charge alteration is linked to the release of an “ionic lock,” originally described for the β2-adrenergic receptor (20), which also in rhodopsin stabilizes the inactive state (16) through interactions between the cytosolic ends of H3 and H6 (21).In the absence of a lipidic bilayer, proton uptake and H6 movement become uncoupled (15). Lipidic composition affects MII formation, rhodopsin structure, and oligomerization (2224) and differs at the rhodopsin membrane interface from the bulk lipidic phase (25). Likewise, MII formation specifically affects lipid structure (26). Although of fundamental importance for GPCR activation, the potential implication of lipid protein interactions in “proton switching” is not clear. A functional role of Glu-134 in lipid interactions has been originally derived from IR spectra where E134Q replacement abolished changes of lipid headgroup vibrations in the MIIGt complex (19). Computational approaches emphasized the “strategic” location of the D(E)RY motif (27), and the Glu-134 carboxyl pKa may critically depend on the lipid protein interface (28). However, the implications for proton switching are not evident, and the theoretical interest is contrasted by the lack of experimental data addressing the effect of the lipidic phase on side chain protonation, secondary structure, and membrane topology of the D(E)RY motif.We have studied the coupling between conformation and protonation in single transmembrane segments derived from H3 of bovine rhodopsin. We have assessed the “modular” function of the D(E)RY motif by determining parameters not evident from the crystal structures, i.e. the pKa of the conserved carboxyl, its linkage to helical structure, and the effect of protonation on side chain to lipid headgroup distance. We show that the D(E)RY motif encodes an autonomous “proton switch” controlling side chain exposure and helix formation in the low dielectric of a lipidic phase. The data ascribe a functional role to lipid protein interactions that couple the chemical potential of protons to an activity-promoting GPCR conformation in a ligand-independent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号