首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   23篇
  204篇
  2020年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2004年   14篇
  2003年   5篇
  2002年   8篇
  2001年   5篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
  1951年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
1.
Molecular evolution of olfactomedin   总被引:2,自引:0,他引:2  
Olfactomedin is a secreted polymeric glycoprotein of unknown function,originally discovered at the mucociliary surface of the amphibian olfactoryneuroepithelium and subsequently found throughout the mammalian brain. As afirst step toward elucidating the function of olfactomedin, itsphylogenetic history was examined to identify conserved structural motifs.Such conserved motifs may have functional significance and provide targetsfor future mutagenesis studies aimed at establishing the function of thisprotein. Previous studies revealed 33% amino acid sequence identity betweenrat and frog olfactomedins in their carboxyl terminal segments. Furtheranalysis, however, reveals more extensive homologies throughout themolecule. Despite significant sequence divergence, cysteines essential forhomopolymer formation such as the CXC motif near the amino terminus areconserved, as is the characteristic glycosylation pattern, suggesting thatthese posttranslational modifications are essential for function.Furthermore, evolutionary analysis of a region of 53 amino acids of fish,frog, rat, mouse, and human olfactomedins indicates that an ancestralolfactomedin gene arose before the evolution of terrestrial vertebrates andevolved independently in teleost, amphibian, and mammalian lineages.Indeed, a distant olfactomedin homolog was identified in Caenorhabditiselegans. Although the amino acid sequence of this invertebrate protein islonger and highly divergent compared with its vertebrate homologs, theprotein from C. elegans shows remarkable similarities in terms of conservedmotifs and posttranslational modification sites. Six universally conservedmotifs were identified, and five of these are clustered in the carboxylterminal half of the protein. Sequence comparisons indicate that evolutionof the N-terminal half of the molecule involved extensive insertions anddeletions; the C-terminal segment evolved mostly through point mutations,at least during vertebrate evolution. The widespread occurrence ofolfactomedin among vertebrates and invertebrates underscores the notionthat this protein has a function of universal importance. Furthermore,extensive modification of its N-terminal half and the acquisition of aC-terminal SDEL endoplasmic-reticulum- targeting sequence may have enabledolfactomedin to adopt new functions in the mammalian central nervoussystem.  相似文献   
2.
Malaria: new ideas, old problems, new technologies   总被引:2,自引:0,他引:2  
  相似文献   
3.
Selected plant introduction lines of S. chacoense and S. commersonii contain two major glycoalkaloids, demissine and a new compound called commersonine. In contrast, other plant introduction lines of S. chacoense contain only solanine and chaconine as the major glycoalkaloids. The isolation and characterization of the new glycoalkaloid is described.  相似文献   
4.
5.
Here we discuss proteomic analyses of whole cell preparations of the mosquito stages of malaria parasite development (i.e. gametocytes, microgamete, ookinete, oocyst and sporozoite) of Plasmodium berghei. We also include critiques of the proteomes of two cell fractions from the purified ookinete, namely the micronemes and cell surface. Whereas we summarise key biological interpretations of the data, we also try to identify key methodological constraints we have met, only some of which we were able to resolve. Recognising the need to translate the potential of current genome sequencing into functional understanding, we report our efforts to develop more powerful combinations of methods for the in silico prediction of protein function and location. We have applied this analysis to the proteome of the male gamete, a cell whose very simple structural organisation facilitated interpretation of data. Some of the in silico predictions made have now been supported by ongoing protein tagging and genetic knockout studies. We hope this discussion may assist future studies.  相似文献   
6.
Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats   总被引:4,自引:0,他引:4  
A number of human hereditary diseases have been associated with the instability of DNA repeats in the genome. Recently, spinocerebellar ataxia type 10 has been associated with expansion of the pentanucleotide repeat (ATTCT)(n).(AGAAT)(n) from a normal range of ten to 22 to as many as 4500 copies. The structural properties of this repeat cloned in circular plasmids were studied by a variety of methods. Two-dimensional gel electrophoresis and atomic force microscopy detected local DNA unpairing in supercoiled plasmids. Chemical probing analysis indicated that, at moderate superhelical densities, the (ATTCT)(n).(AGAAT)(n) repeat forms an unpaired region, which further extends into adjacent A+T-rich flanking sequences at higher superhelical densities. The superhelical energy required to initiate duplex unpairing is essentially length-independent from eight to 46 repeats. In plasmids containing five repeats, minimal unpairing of (ATTCT)(5).(AGAAT)(5) occurred while 2D gel analysis and chemical probing indicate greater unpairing in A+T-rich sequences in other regions of the plasmid. The observed experimental results are consistent with a statistical mechanical, computational analysis of these supercoiled plasmids. For plasmids containing 29 repeats, which is just above the normal human size range, flanked by an A+T-rich sequence, atomic force microscopy detected the formation of a locally condensed structure at high superhelical densities. However, even at high superhelical densities, DNA strands within the presumably compact A+T-rich region were accessible to small chemicals and oligonucleotide hybridization. Thus, DNA strands in this "collapsed structure" remain unpaired and accessible for interaction with other molecules. The unpaired DNA structure functioned as an aberrant replication origin, in that it supported complete plasmid replication in a HeLa cell extract. A model is proposed in which unscheduled or aberrant DNA replication is a critical step in the expansion mutation.  相似文献   
7.
Neural stem cells (NSCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes under specific local microenvironments. In here, we present a set of methods used for three dimensional (3D) differentiation and miRNA analysis of a clonal human neural stem cell (hNSC) line, currently in clinical trials for stroke disability (NCT01151124 and NCT02117635, Clinicaltrials.gov). HNSCs were derived from an ethical approved first trimester human fetal cortex and conditionally immortalized using retroviral integration of a single copy of the c-mycERTAMconstruct. We describe how to measure axon process outgrowth of hNSCs differentiated on 3D scaffolds and how to quantify associated changes in miRNA expression using PCR array. Furthermore we exemplify computational analysis with the aim of selecting miRNA putative targets. SOX5 and NR4A3 were identified as suitable miRNA putative target of selected significantly down-regulated miRNAs in differentiated hNSC. MiRNA target validation was performed on SOX5 and NR4A3 3’UTRs by dual reporter plasmid transfection and dual luciferase assay.  相似文献   
8.
Membrane skeletons are structural elements that provide mechanical support to the plasma membrane and define cell shape. Here, we identify and characterize a putative protein component of the membrane skeleton of the malaria parasite. The protein, named PbIMC1a, is the structural orthologue of the Toxoplasma gondii inner membrane complex protein 1 (TgIMC1), a component of the membrane skeleton in tachyzoites. Using targeted gene disruption in the rodent malaria species Plasmodium berghei, we show that PbIMC1a is involved in sporozoite development, is necessary for providing normal sporozoite cell shape and mechanical stability, and is essential for sporozoite infectivity in insect and vertebrate hosts. Knockout of PbIMC1a protein expression reduces, but does not abolish, sporozoite gliding locomotion. We identify a family of proteins related to PbIMC1a in Plasmodium and other apicomplexan parasites. These results provide new functional insight in the role of membrane skeletons in apicomplexan parasite biology.  相似文献   
9.
New studies highlight the wide diversity of post-translational protein modifications in the intra-erythrocytic stages of the malaria parasite, raising new avenues for inquiry.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号