首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   21篇
  国内免费   3篇
  2023年   4篇
  2022年   16篇
  2021年   27篇
  2020年   8篇
  2019年   19篇
  2018年   14篇
  2017年   9篇
  2016年   18篇
  2015年   20篇
  2014年   27篇
  2013年   43篇
  2012年   51篇
  2011年   49篇
  2010年   28篇
  2009年   17篇
  2008年   24篇
  2007年   23篇
  2006年   18篇
  2005年   17篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   7篇
  1982年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
1.
Using the imidate procedure, 2,3,4,6-tetra-O-benzyl-1-O-(N-methylacetimidoyl)-β-d-galactopyranose was condensed with various monosaccharides to provide, in good yield and with high stereoselectivity, α-linked disaccharides.  相似文献   
2.
The mycoparasitic interactions of Verticillium biguttatum with Rhizoctonia solani and with a variety of other soil-borne fungi were investigated in dual cultures. V. biguttatum interacted with various soil fungi by appressed growth along the host hyphae and infrequent penetrations. Intracellular growth and subsequent sporulation, however, only occurred with R. solani, a few binucleate Rhizoctonia and Ceratobasidium spp., and Sclerotinia sclerotiorum. Effective mycoparasitism on sclerotia was restricted to those belonging to R. solani.Electron-microscopic observations revealed that V. biguttatum can penetrate the host cell with infection tubes. This process is probably mediated by enzymatic hydrolysis of the cell wall. Subsequently, trophic hyphae develop within the host cytoplasm, ultimately resulting in death of the host cell.  相似文献   
3.
It is assumed that plasmin participates in pericellular proteolysis in the epidermis. Plasmin is generated by keratinocyte-associated plasminogen activators from the proenzyme plasminogen; plasminogen activation can proceed at the keratinocyte surface. The resultant plasmin interferes with cell to matrix adhesion and does possibly contribute to keratinocyte migration during reepithelialization. Here we describe the receptor for urokinase-type plasminogen activator (uPA-R) in the human keratinocyte cell line HaCaT, which serves to direct plasminogen activation to the cell surface; we relate the receptor to the uPA-R previously described in human myclo-/monocytes. Binding of uPA to the receptor accelerated plasminogen activation by a factor of ≈10, compared to uPA in solution. Receptor-bound uPA was susceptible to inhibition by the plasminogen activator inhibitors 1 and 2. uPA and uPA-R antigen, as well as uPA activity, were localized to the leading front of expanding sheets of HaCaT cells. Exposure of HaCaT cells to plasminogen was followed by detachment of the cells. Detachment was prevented by an anti-catalytic anti-uPA antibody, by the plasmin-specific inhibitor aprotinin, and by the lysine analogue tranexamic acid, the latter of which prevents plasmin(ogen) binding to the cell surface. Our findings support the hypothesis that uPA-mediated plasminogen activation is characteristic of mobile rather than sessile keratinocytes. Moreover, the uPA-R seems to focalize plasminogen activation to the surface of cells at the site of keratinocyte migration.  相似文献   
4.
The temperature-sensitive mutation cc1 blocks a number of cell cycle processes in Paramecium including macronuclear DNA synthesis, oral morphogenesis, and the later stages of micronuclear mitosis. Oral morphogenesis and micronuclear mitosis also occur in the sexual pathway. This study shows that cc1 cells can proceed through conjugation or autogamy under restrictive conditions; neither stomatogenesis nor micronuclear mitosis is blocked. Fertilization and macronuclear determination occur normally, but DNA synthesis in macronuclear anlagen is blocked. Therefore, this mutation discriminates between oral replacement during meiosis and vegetative prefission stomatogenesis, and between mitotic spindle elongation during the pregamic and postzygotic divisions and spindle elongation during the vegetative cell cycle. These results point to a fundamental regulatory difference between morphogenesis in the vegetative and sexual pathways. © 1994 Wiley-Liss, Inc.  相似文献   
5.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   
6.
The synthesis of two series of glycopeptides, part of the N-terminal region of human glycophorin A, was accomplished starting from derivatives ofO--d-galactopyranosyl-(1–3)-O-(2-acetamido-2-deoxy--d-galactopyranosyl)-l-serine and-l-threonine.  相似文献   
7.
In this study, we extracted the essential oils of the stem, leaf, and flower of Achillea filipendulina, analyzed them, and studied their antibacterial properties. Of 16, 53, and 35 compounds identified in the stem, leaf, and flowers, respectively, only five are present in all three segments of the plant. The essential oil of the stem was mainly composed of neryl acetate, spathulenol, carvacrol, santolina alcohol, and trans‐caryophyllene oxide. However, the main identified components of leaf were 1,8‐cineole, camphor, ascaridole, trans‐isoascaridole, and piperitone oxide and the main components of the flower oil were ascaridole, trans‐isoascaridole, 1,8‐cineole, p‐cymene, and camphor. The extracted oil from different segments demonstrated varying antibacterial properties against both Gram‐positive and Gram‐negative bacteria, demonstrated by disk, minimum inhibitory concentration, and minimum bactericidal concentration methods. These suggest that the application of all segments of aerial parts of A. filipendulina may have a better therapeutic effect in fighting pathogenic systems.  相似文献   
8.
Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofactor SON but also with PRPFs and snRNAs related to the tri-snRNP complex. SANS is required for the transfer of tri-snRNPs between Cajal bodies and nuclear speckles for spliceosome assembly and may also participate in snRNP recycling back to Cajal bodies. SANS depletion alters the kinetics of spliceosome assembly, leading to accumulation of complex A. SANS deficiency and USH1G pathogenic mutations affects splicing of genes related to cell proliferation and human Usher syndrome. Thus, we provide the first evidence that splicing dysregulation may participate in the pathophysiology of Usher syndrome.  相似文献   
9.
10.
The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non–SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II–specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II–specific subunits, while it can be readily detected in complexes with condensin I–specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II–specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II–specific homolog Cap-D3. As condensin II–specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号