首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   45篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   20篇
  2016年   17篇
  2015年   19篇
  2014年   29篇
  2013年   50篇
  2012年   35篇
  2011年   40篇
  2010年   32篇
  2009年   28篇
  2008年   28篇
  2007年   35篇
  2006年   36篇
  2005年   26篇
  2004年   23篇
  2003年   26篇
  2002年   21篇
  2001年   8篇
  2000年   9篇
  1999年   4篇
  1998年   15篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1974年   4篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有633条查询结果,搜索用时 15 毫秒
1.
2.
Diphtheria toxin fragment A interacts with Cibacron blue in solution, although it is not retained by blue Sepharose columns. Difference spectral titration of fragment A with the dye gives a dissociation constant of the order of 10–5 M and a 11 stoichiometry for the complex. In equilibrium dialysis experiments Cibacron blue behaves as a competitive inhibitor of the binding of NAD to diphtheria toxin fragment A. The dye inhibits in a non-competitive way the fragment A-catalysed transfer of ADP-ribose from NAD to elongation factor 2 (EF2). By affinity chromatography on blue Sepharose a binding of EF2 and of ADP-ribosyl-EF2 with the dye is also demonstrated. GDP, GTP and GDP(CH2)P are able to displace EF2 from blue Sepharose.  相似文献   
3.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   
4.
A study was made of the effects of common protein denaturants and water-miscible organic solvents on both the stability and activity of the malic enzyme [(S)-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating); EC 1.1.1.40] from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. At 25 degrees C, the enzyme was not inactivated in 4 M urea or 0.05% SDS over 24 h, while the half-life was 30 min in 6 M guanidine hydrochloride and 5 h in 0.075% SDS. The enzyme stability in water-miscible organic solvents at 25 degrees C is somewhat surprising: after a 24-h incubation, the enzyme was completely active in 50% dimethylformamide; it lost 15% of its initial activity in 50% methanol or 15% ethanol. However, the resistance to organic solvents was greatly reduced at higher temperatures. The enzyme was able to catalyze the malate conversion even in the presence of 1.5% Triton X-100 or sodium deoxycholate. A number of solvents were found to stimulate the malic activity independent of time. Studies with 50% methanol revealed that the activation was reversible and inversely related to the temperature; moreover, the solvent was demonstrated to exclusively affect the maximal velocity of catalysis, the Km values for both substrates being unchanged. Investigation was made to find out whether there was a correlation between enzyme stability, as well as activation, and hydrophobicity of the organic medium. The residual malic activity after incubation in the water/organic medium correlated inversely with the logarithm of the partition coefficient in octanol/H2O of the mixture used as a hydrophobicity index. On the other hand, the extent of activation depended directly on the logarithm of the molar concentration of the organic solvent required for maximal enzymatic activation. Because of its remarkable resistance to organic solvents required for maximal enzymatic activation. Because of its remarkable resistance to organic solvents and protein denaturants in general, the malic enzyme from Sulfolobus solfataricus can be considered suitable for biotechnological applications.  相似文献   
5.
6.
The mechanism by which pentylenetetrazole provokes convulsions in animals has been investigated by measuring its influence in vitro on the activities of several enzymes of glutamate metabolism in rat brain homogenates. Pentylenetetrazole does not affect the specific activities of glutamine synthetase, glutaminase, or glutamate decarboxylase; it inhibits those of glutamate dehydrogenase and aspartate aminotransferase, and stimulates that of gamma-aminobutyric acid (GABA) aminotransferase. The overall consequence of the action of pentylenetetrazole on the activities of these enzymes should be an increase in the concentration of glutamate and a decrease in that of GABA. This modulation of glutamate and GABA metabolism by pentylenetetrazole could contribute to the triggering of convulsions.  相似文献   
7.
8.
Binding of nicotinamide–adenine dinucleotides to diphtheria toxin   总被引:5,自引:0,他引:5       下载免费PDF全文
1. Changes in protein fluorescence have been utilized in determining the stoicheiometry and dissociation constants of the complexes of diphtheria toxin with NADH(2), NAD, NADPH(2) and NADP. 2. The binding stoicheiometry is 2moles of NADH(2) and 1mole of NADPH(2)/mole of diphtheria toxin. The binding sites for NADH(2) appear to be equivalent and independent. 3. The toxin shows a higher affinity for the reduced than for the oxidized forms of the nucleotides. 4. Dissociation constants at 0.01I, pH7 and 25 degrees are 0.7x10(-6)m for NADH(2) and 0.45x10(-6)m for NADPH(2). Dissociation constants increase with increasing ionic strength, indicating that the binding is mainly electrostatic. 5. Bound NADH(2) and NADPH(2) may be activated to fluoresce by the transfer of energy from the excited aromatic amino acids of the toxin. Activation and emission spectra of bound and free nucleotides are compared. 6. Since NAD and NADH(2) are cofactors specifically required for the inhibition of protein synthesis by diphtheria toxin, the possible role of toxin-nucleotide complexes is discussed in this regard.  相似文献   
9.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   
10.
We studied the effect of heparin on proliferation and signalling in normal NIH/3T3 fibroblasts, and in cells transformed by different oncogenes. Heparin inhibited the proliferation of normal as well as of v-sis and v-erbB transformed fibroblasts in the presence of serum, but failed to inhibit v-erbB-driven proliferation in serum-starved cultures; under these conditions, heparin inhibited by approximately 50% the proliferation of normal and v-sis- transformed cells. Heparin also inhibited PDGF-induced cell proliferation and inositol lipid turnover in v-sis transformants, but it did not affect PDGF mitogenic signalling in NIH/3T3 fibroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号