首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   8篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1992年   2篇
  1988年   1篇
排序方式: 共有47条查询结果,搜索用时 156 毫秒
1.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
2.
3.
The two classical forms of human trypanosomoses are sleeping sickness due to Trypanosoma brucei gambiense or T. brucei rhodesiense, and Chagas disease due to T. cruzi. However, a number of atypical human infections caused by other T. species (or sub-species) have been reported, namely due to T. brucei brucei, T. vivax, T. congolense, T. evansi, T. lewisi, and T. lewisi-like. These cases are reviewed here. Some infections were transient in nature, while others required treatments that were successful in most cases, although two cases were fatal. A recent case of infection due to T. evansi was related to a lack of apolipoprotein L-I, but T. lewisi infections were not related to immunosuppression or specific human genetic profiles. Out of 19 patients, eight were confirmed between 1974 and 2010, thanks to improved molecular techniques. However, the number of cases of atypical human trypanosomoses might be underestimated. Thus, improvement, evaluation of new diagnostic tests, and field investigations are required for detection and confirmation of these atypical cases.

Key Learning Points

  • The classical human trypanosomoses are human African trypanosomosis (HAT) or sleeping sickness, and Chagas disease, the Latin American human trypanosomosis.
  • Atypical human infections caused by Trypanosoma species that normally are restricted to animals have been reported. These cases of atypical human trypanosomoses (a-HT) are mostly transient, but some require treatment and can be fatal.
  • Only a few cases of a-HT have been fully confirmed, especially in Asia, leading to the hypothesis that the actual prevalence is probably underestimated.
  • The detection of a case of a-HT should be based on observation of the parasite by direct microscopy. Evaluating/improving the diagnoses through serological and PCR assays would help in detecting and identifying atypical trypanosomosis infections in humans. These laboratory research and field activities are needed to evaluate the actual occurrence of atypical cases.

Top Five Papers

  1. Verma A, Manchanda S, Kumar N, Sharma A, Goel M, et al. (2011) Trypanosoma lewisi or Trypanosoma lewisi-like infection in a 37-day-old infant. Am J Trop Med Hyg 85: 221–224.
  2. Deborggraeve S, Koffi M, Jamonneau V, Bonsu FA, Queyson R, et al. (2008) Molecular analysis of archived blood slides reveals an atypical human Trypanosoma infection. Diagn Microbiol Infect Dis 61: 428–433.
  3. Vanhollebeke B, Truc P, Poelvoorde P, Pays A, Joshi PP, et al. (2006) Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. N Engl J Med 355: 2752–2756.
  4. Joshi PP, Shegokar V, Powar S, Herder S, Katti R, et al. (2005) Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. Am J Trop Med Hyg 73: 491–495.
  5. Howie S, Guy M, Fleming L, Bailey W, Noyes H, et al. (2006) A Gambian infant with fever and an unexpected blood film. PLoS Med 3: e355. doi:10.1371/journal.pmed.0030355.
  相似文献   
4.
Porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to be shed in the semen of infected boars. To determine whether the reproductive tissues could be a persistent source of virus and the possible origin of PRRSV found in semen of infected boars, 20 PRRSV-seronegative boars were intranasally inoculated with 5 x 10(6) median tissue culture infective doses (TCID50) of PRRSV and necropsied at different times post-inoculation (p.i.) from Day 2 to Day 37 p.i. Blood samples were collected before experimental inoculation, at necropsy and at different times p.i. At necropsy, epididymal semen and reproductive tissues were collected and the presence of the virus determined by virus isolation. The infection of the boars was demonstrated by the isolation of the virus from the sera of all inoculated boars and by seroconversion. PRRSV was detected in serum samples from Day 2 to Day 23 p.i., although the viremic period was largely dependent on the individual response to infection. Viral replication was proven within different reproductive tissues from Day 2 to Day 23 p.i., being most consistently found in the epididymus. In addition, PRRSV was isolated in semen from Day 4 to Day 10 p.i. The correlation of a diminished viremia and the inability to isolate PRRSV from semen or reproductive tissues may be due to one of two possibilities. First, viremia is responsible for most of the virus isolated from reproductive tissues due to the movement of PRRSV-infected cells out of the blood and into the tissues. Second, viremia may initially seed the reproductive tissues with PRRSV, and then the virus is produced into the reproductive tract and shed into semen at low levels.  相似文献   
5.
6.
7.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   
8.
Hypersensitivity reactions (HSRs) to chemotherapy drugs, such as taxanes and platins, and to monoclonal antibodies limit their therapeutic use due to the severity of some reactions and the fear of inducing a potentially lethal reaction in highly sensitized patients. Patients who experience hypersensitivity reactions face the prospect of abandoning first-line treatment and switching to a second-line, less effective therapy. Some of these reactions are mast cell-mediated hypersensitivity reactions, a subset of which occur through an immunoglobulin (IgE)-dependent mechanism, and are thus true allergies. Others involve mast cells without a demonstrable IgE mechanism. Whether basophils can participate in these reactions has not been demonstrated. Rapid drug desensitization (RDD) is a procedure that induces temporary tolerance to a drug, allowing a medication allergic patient to receive the optimal agent for his or her disease. Through RDD, patients with IgE and non-IgE HSRs can safely be administered important medications while minimizing or completely inhibiting adverse reactions. Due to the clinical expansion and success of RDD, the molecular mechanisms inducing the temporary tolerization have been investigated and are partially understood, allowing for safer and more effective protocols. This article reviews the current literature on molecular mechanisms of RDD with an emphasis in our recent contributions to this field as well as the indications, methods and outcomes of RDD for taxanes, platins, and monoclonal antibodies.  相似文献   
9.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, persists as a public health problem in several sub-Saharan countries. Evidence-based, spatially explicit estimates of population at risk are needed to inform planning and implementation of field interventions, monitor disease trends, raise awareness and support advocacy. Comprehensive, geo-referenced epidemiological records from HAT-affected countries were combined with human population layers to map five categories of risk, ranging from “very high” to “very low,” and to estimate the corresponding at-risk population.

Results

Approximately 70 million people distributed over a surface of 1.55 million km2 are estimated to be at different levels of risk of contracting HAT. Trypanosoma brucei gambiense accounts for 82.2% of the population at risk, the remaining 17.8% being at risk of infection from T. b. rhodesiense. Twenty-one million people live in areas classified as moderate to very high risk, where more than 1 HAT case per 10,000 inhabitants per annum is reported.

Discussion

Updated estimates of the population at risk of sleeping sickness were made, based on quantitative information on the reported cases and the geographic distribution of human population. Due to substantial methodological differences, it is not possible to make direct comparisons with previous figures for at-risk population. By contrast, it will be possible to explore trends in the future. The presented maps of different HAT risk levels will help to develop site-specific strategies for control and surveillance, and to monitor progress achieved by ongoing efforts aimed at the elimination of sleeping sickness.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号