首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   13篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2004年   1篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有71条查询结果,搜索用时 218 毫秒
1.
2.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
3.
Advantages of nonlinear mixed models for fitting avian growth curves   总被引:1,自引:0,他引:1  
Our understanding of avian growth rates can benefit from the use of two statistical approaches that explicitly model the sources of intraspecific variation. First, random effects can evaluate whether there are consistent differences between individuals and groups of siblings within a population, and also account for any lack of statistical independence among data points. Second, nonlinear fixed‐effect functions can be extended to test specific biological hypotheses of interest, such as for differences between groups or populations. We illustrate the advantages of these methods by using nonlinear mixed models to study variation in the growth trajectories of nestling orange‐crowned warblers Oreothylpis celata. Specifically, we quantify the sources of variation within populations, analyze the effects of asynchronous hatching, and test for a difference in the growth rates of populations in Alaska and California, which are at the northern and southern limits of the species’ breeding distribution. We found that growth rates did not consistently vary between nests and individuals within populations and were not affected by asynchronous hatching, but were higher in Alaska than in California. Our extensions of traditional methods allowed us to accurately quantify this difference between populations, which is consistent with life history theory but has rarely been demonstrated in previous comparisons of intraspecific passerine populations. The methods we present can be applied to any taxonomic group and adjusted to fit any nonlinear function, and we provide code and implementation advice to facilitate the use of this analytical framework in future studies.  相似文献   
4.
5.
6.
Our understanding of when natural populations are regulated during their annual cycle is limited, particularly for migratory species. This information is needed for parametrizing models that can inform management and conservation. Here, we use 14 years of data on colour-marked birds to investigate how conspecific density and habitat quality during the tropical non-breeding period interact to affect body condition and apparent annual survival of a long-distance migratory songbird, the American redstart (Setophaga ruticilla). Body condition and survival of birds in high-quality mangrove habitat declined as density increased. By contrast, body condition improved and survival did not vary as density increased in adjacent, lower quality scrub habitat, although mean condition and survival were almost always lower than in mangrove. High rainfall enhanced body condition in scrub but not in mangrove, suggesting factors such as food availability outweighed consequences of crowding in lower quality habitat. Thus, survival of overwintering redstarts in mangrove habitat, disproportionately males, appears to be regulated by a crowding mechanism based on density-dependent resource competition. Survival of individuals in scrub, mostly females, appears to be limited by density-independent environmental factors but not regulated by crowding. The contrasting effects of density and food limitation on individuals overwintering in adjacent habitats illustrate the complexity of processes operating during the non-breeding period for migratory animals, and emphasize the need for long-term studies of animals in multiple habitats and throughout their annual cycles.  相似文献   
7.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
8.
9.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   
10.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号