首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   7篇
  国内免费   1篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.  相似文献   
2.
3.
In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development.  相似文献   
4.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
5.
6.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   
7.
8.
9.
10.
In this paper, we develop a mathematical model of blood circulation in the liver lobule. We aim to find the pressure and flux distributions within a liver lobule. We also investigate the effects of changes in pressure that occur following a resection of part of the liver, which often leads to high pressure in the portal vein. The liver can be divided into functional units called lobules. Each lobule has a hexagonal cross-section, and we assume that its longitudinal extent is large compared with its width. We consider an infinite lattice of identical lobules and study the two-dimensional flow in the hexagonal cross-sections. We model the sinusoidal space as a porous medium, with blood entering from the portal tracts (located at each of the vertices of the cross-section of the lobule) and exiting via the centrilobular vein (located in the center of the cross-section). We first develop and solve an idealized mathematical model, treating the porous medium as rigid and isotropic and blood as a Newtonian fluid. The pressure drop across the lobule and the flux of blood through the lobule are proportional to one another. In spite of its simplicity, the model gives insight into the real pressure and velocity distribution in the lobule. We then consider three modifications of the model that are designed to make it more realistic. In the first modification, we account for the fact that the sinusoids tend to be preferentially aligned in the direction of the centrilobular vein by considering an anisotropic porous medium. In the second, we account more accurately for the true behavior of the blood by using a shear-thinning model. We show that both these modifications have a small quantitative effect on the behavior but no qualitative effect. The motivation for the final modification is to understand what happens either after a partial resection of the liver or after an implantation of a liver of small size. In these cases, the pressure is observed to rise significantly, which could cause deformation of the tissue. We show that including the effects of tissue compliance in the model means that the total blood flow increases more than linearly as the pressure rises.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号