首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1969年   1篇
  1958年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
Thalli of Xanthoria parietina have been grown in cultures in the natural environment. In early phases of development the fungus associates with foreign algae and only later forms a symbiosis with Pseudotrebouxia . The lichen is shown to have a very effective mechanism for distribution by sexual spores followed by relichenization.  相似文献   
2.
3.
Angiogenesis is an essential component of skeletal development and VEGF signaling plays an important if not pivotal role in this process. Previous attempts to examine the roles of VEGF in vivo have been largely unsuccessful because deletion of even one VEGF allele leads to embryonic lethality before skeletal development is initiated. The availability of mice expressing only the VEGF120 isoform (which do survive to term) has offered an opportunity to explore the function of VEGF during embryonic skeletal development. Our study of these mice provides new in vivo evidence for multiple important roles of VEGF in both endochondral and intramembranous bone formation, as well as some insights into isoform-specific functions. There are two key differences in vascularization of developing bones between wild-type and VEGF(120/120) mice. VEGF(120/120) mice have not only a delayed recruitment of blood vessels into the perichondrium but also show delayed invasion of vessels into the primary ossification center, demonstrating a significant role of VEGF at both an early and late stage of cartilage vascularization. These findings are the basis for a two-step model of VEGF-controlled vascularization of the developing skeleton, a hypothesis that is supported by the new finding that VEGF is expressed robustly in the perichondrium and surrounding tissue of cartilage templates of future bones well before blood vessels appear in these regions. We also describe new in vivo evidence for a possible role of VEGF in chondrocyte maturation, and document that VEGF has a direct role in regulating osteoblastic activity based on in vivo evidence and organ culture experiments.  相似文献   
4.
Various aspects of excitation energy conversion in anoxygenic photosynthetic bacteria are surveyed. This minireview discusses different models that have been proposed during the past 60 years to describe excitation energy transfer from an antenna molecule to the reaction center. First, a simple one-dimensional model was suggested, but over time the models became more detailed when structural and dynamic information was included. This review focuses mainly on the picture of purple bacteria and green sulfur bacteria developed during the past decades. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
Mutants of Rhodobacter (Rba.) sphaeroides are described which were designed to study electron transfer along the so-called B-branch of reaction center (RC) cofactors. Combining the mutation L(M214)H, which results in the incorporation of a bacteriochlorophyll, β, for HA [Kirmaier et al. (1991) Science 251: 922–927] with two mutations, G(M203)D and Y(M210)W, near BA, we have created a double and a triple mutant with long lifetimes of the excited state P* of the primary donor P, viz. 80 and 160 ps at room temperature, respectively. The yield of P+QA formation in these mutants is reduced to 50 and 30%, respectively, of that in wildtype RCs. For both mutants, the quantum yield of P+HB formation was less than 10%, in contrast to the 15% B-branch electron transfer demonstrated in RCs of a similar mutant of Rba. capsulatus with a P* lifetime of 15 ps [Heller et al. (1995) Science 269: 940–945]. We conclude that the lifetime of P* is not a governing factor in switching to B-branch electron transfer. The direct photoreduction of the secondary quinone, QB, was studied with a triple mutant combining the G(M203)D, L(M214)H and A(M260)W mutations. In this triple mutant QA does not bind to the reaction center [Ridge et al. (1999) Photosynth Res 59: 9–26]. It is shown that B-branch electron transfer leading to P+QB formation occurs to a minor extent at both room temperature and at cryogenic temperatures (about 3% following a saturating laser flash at 20 K). In contrast, in wildtype RCs P+QB formation involves the A-branch and does not occur at all at cryogenic temperatures. Attempts to accumulate the P+QB state under continuous illumination were not successful. Charge recombination of P+QB formed by B-branch electron transfer in the new mutant is much faster (seconds) than has been previously reported for charge recombination of P+QB trapped in wildtype RCs (105 s) [Kleinfeld et al. (1984b) Biochemistry 23: 5780–5786]. This difference is discussed in light of the different binding sites for QB and QB that recently have been found by X-ray crystallography at cryogenic temperatures [Stowell et al. (1997) Science 276: 812–816]. We present the first low-temperature absorption difference spectrum due to P+QB . This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
6.
Properties of the excited states in reaction center core (RCC) complexes of the green sulfur bacterium Prosthecochloris aestuarii were studied by means of femtosecond time-resolved isotropic and anisotropic absorption difference spectroscopy at 275 K. Selective excitation of the different transitions of the complex resulted in the rapid establishment of a thermal equilibrium. At about 1 ps after excitation, the energy was located at the lowest energy transition, BChl a 835. Time constants varying between 0.26 and 0.46 ps were observed for the energy transfer steps leading to this equilibrium. These transfer steps were also reflected in changes in polarization. Our measurements indicate that downhill energy transfer towards excited BChl a 835 occurs via the energetically higher spectral forms BChl a 809 and BChl a 820. Low values of the anisotropy of about 0.07 were found in the ‘two-color’ measurements at 820 and 835 nm upon excitation at 800 nm, whereas the ‘one-color’ kinetics showed much higher anisotropies. Charge separation occurred with a time constant varying between 20 and 30 ps. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
7.
Brassica species are increasingly being used as cover crops to suppress soil-borne diseases in potato cropping systems. Experiments were conducted in controlled environments and in the field to evaluate the effects of cover crop root or shoot or a combination of root and shoot tissues on potato root and tuber health. In a lab assay we examined the extent to which volatile compounds released from tissues of two cover crop species, rye (Cereale secale L.) and oriental mustard (Brassica juncea L.), could inhibit mycelium growth of two important potato diseases, Rhizoctonia solani and Pythium ultimum. Twenty-four hours into the lab assay, volatile compounds from all residues suppressed fungal growth. After 48 h, marked suppression of hyphal growth continued in the presence of mustard residues but not in the presence of rye tissues or the control without tissues. A 75 L volume container experiment evaluated the effect of incorporating different quantities of mustard shoot and root tissues (none, comparable to field level and fourfold field level) into R. solani and P. ultimum infested soil on potato growth, root health and tuber disease. In the container study, incorporating mustard shoots at the highest dose increased potato yield by 54% and reduced disease rating to 2.3 compared to a severe rating of 4.4 in the control. In the field trial, potato growth, root health and tuber disease levels were evaluated in plots where disease management involved either incorporation of mustard or rye cover crop roots, shoots and whole plants (roots plus shoots) or standard farmer practice of a fumigated fallow as a control. White root tissue was used as a health indicator, and averaged 58 and 78% in the fumigated control and mustard cover crop treatments, respectively. The highest healthy root tissue status (91%) was recorded where whole plants of mustard were incorporated. In contrast to the visual assessment of root and tuber health, tuber yield in the field was not influenced by cover crop treatment. Across experiments, the incorporation of or exposure to whole mustard plants was consistently effective at suppressing soil-borne fungi and promoting healthy roots and tubers, especially at higher rates of biomass. Mustard should be managed so as to maximize incorporated biomass for effective biofumigation. Multipurpose management requiring removal of mustard shoots is incompatible with promoting potato rhizosphere health.  相似文献   
8.
Growth of three strains of Tetracladium marchalianum was inhibited by Cd-, and, to a lesser extent, by Cu-and Zn-chloride. In the presence of 50 μM Cd(II), all strains increased total thiol and glutathione production to 6, 11, and 21 μmoles · mg−1 dry mass, respectively. Cd(II) also induced the synthesis of one to several compounds reacting with 5,5′-dithio-bis-(2-nitrobenzoic acid). In order to identify buffer-soluble thiolic compounds other than cysteine, γ-EC and γ-ECG (glutathione) were analyzed and confirmed by mass spectrometry. No water soluble sulfides were detectable in any of the culture filtrates, but Cd(II) exposure at a concentration of 50 μM raised sulfide levels in the mycelia of two of the strains between 3 and 7-fold, Cu(II) and Zn(II) had no effect. Energy Dispersive X-ray-analysis (EDX) and Electron Spectrometry-Images (ES-I) of one strain revealed increased levels of Cu and Zn in the cytoplasm and even higher levels in vacuolar precipitates. Zn and Cu are accumulated in the vacuoles as polyphosphates, identified by Electron Energy Loss-Spectrometry (EELS). Cd was found only in the vacuoles.  相似文献   
9.
10.
We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a E157*Mhda) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a E157*Mhda mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a E157*Mhda mice are the first mouse model for a mutation within the Fam46a gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号