首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Treatment of non-induced or phenobarbital-induced, glutathione-depleted mice with 400 mg/kg paracetamol led to a marked ethane exhalation as an index of in vivo lipid peroxidation (LPO) and to a significant elevation of liver-specific serum enzyme activities. Similar effects were seen with rats treated with 0.5 ml/kg CCl4. Pretreatment with the iron-chelating agent desferrioxamine (DFO) clearly suppressed lipid peroxidation in all cases, but inhibited only the CCl4-induced hepatotoxicity. Treatment of mice with desferrioxamine alone showed no hepatotoxicity at all, nor did it influence liver GSH-levels. In addition, DFO had no effect on hepatic microsomal enzyme activities responsible for the bioactivation of both paracetamol and CCl4. These findings are consistent with the theories which indicate that lipid peroxidation requires the presence of Fe2+-ions, regardless of the initiating agent, and that LPO is involved in CCl4-toxicity, but most probably not in paracetamol-induced liver damage. Furthermore, Fe2+-ions might play a role as mediators of CCl4-hepatotoxicity.  相似文献   
2.
Gamma delta T cells (GDTc) comprise a small subset of cytolytic T cells shown to kill malignant cells in vitro and in vivo. We have developed a novel protocol to expand GDTc from human blood whereby GDTc were initially expanded in the presence of alpha beta T cells (ABTc) that were then depleted prior to use. We achieved clinically relevant expansions of up to 18,485-fold total GDTc, with 18,849-fold expansion of the Vδ1 GDTc subset over 21 days. ABTc depletion yielded 88.1 ± 4.2 % GDTc purity, and GDTc continued to expand after separation. Immunophenotyping revealed that expanded GDTc were mostly CD27-CD45RA- and CD27-CD45RA+ effector memory cells. GDTc cytotoxicity against PC-3M prostate cancer, U87 glioblastoma and EM-2 leukemia cells was confirmed. Both expanded Vδ1 and Vδ2 GDTc were cytotoxic to PC-3M in a T cell antigen receptor- and CD18-dependent manner. We are the first to label GDTc with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles for cellular MRI. Using protamine sulfate and magnetofection, we achieved up to 40 % labeling with clinically approved Feraheme (Ferumoxytol), as determined by enumeration of Perls’ Prussian blue-stained cytospins. Electron microscopy at 2,800× magnification verified the presence of internalized clusters of iron oxide; however, high iron uptake correlated negatively with cell viability. We found improved USPIO uptake later in culture. MRI of GDTc in agarose phantoms was performed at 3 Tesla. The signal-to-noise ratios for unlabeled and labeled cells were 56 and 21, respectively. Thus, Feraheme-labeled GDTc could be readily detected in vitro via MRI.  相似文献   
3.
Pathways of chaperone-mediated protein folding in the cytosol   总被引:10,自引:0,他引:10  
Cells are faced with the task of folding thousands of different polypeptides into a wide range of conformations. For many proteins, the folding process requires the action of molecular chaperones. In the cytosol of prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a network of pathways that can handle substrate polypeptides from the point of initial synthesis on ribosomes to the final stages of folding.  相似文献   
4.
The role in protein folding of the eukaryotic chaperonin TRiC/CCT is only partially understood. Here, we show that a group of WD40 beta-propeller proteins in the yeast cytosol interact transiently with TRiC upon synthesis and require the chaperonin to reach their native state. TRiC cooperates in the folding of these proteins with the ribosome-associated heat shock protein (Hsp)70 chaperones Ssb1/2p. In contrast, newly synthesized actin and tubulins, the major known client proteins of TRiC, are independent of Ssb1/2p and instead use the co-chaperone GimC/prefoldin for efficient transfer to the chaperonin. GimC can replace Ssb1/2p in the folding of WD40 substrates such as Cdc55p, but combined deletion of SSB and GIM genes results in loss of viability. These findings expand the substrate range of the eukaryotic chaperonin by a structurally defined class of proteins and demonstrate an essential role for upstream chaperones in TRiC-assisted folding.  相似文献   
5.
6.
Cytotoxicity of alkylphenols from Ginkgo biloba.   总被引:1,自引:0,他引:1  
C P Siegers 《Phytomedicine》1999,6(4):281-283
  相似文献   
7.
A model calculation of the hemopoiesis of the mouse based on known hematologic data leads to the conclusion that approximately 3% of all nucleated bone marrow cells are stem cells (pluripotent plus committed stem cells). By a new 125IUdR labeling technique on radiation chimeras, a relative number of 2%-7% stem cells was determined. In previous studies with test systems for stem cells using colony formation in vivo or in vitro, a relative number of stem cells of at least one order of magnitude lower has been estimated. In this study the stem cells are found to have a turnover time of about 4.3 days in the donor mice. This turnover time remained unchanged even after transfusion of marrow cells into lethally irradiated recipient mice. Radiosensitivity determinations yielded a D0 of 80 rad for stem cells in S-phase and D0 of 185 rad for stem cells distributed throughout the entire cell cycle. The respective extrapolation numbers were 1.23 and 1.14. Experiments using an 3H-TdR suicide technique revealed different cell cycle parameters for bone marrow stem cells seeding to the spleens and to the femurs of lethally irradiated recipients, primarily a shortening of S-phase in cells seeding to femurs. The method described here provides a new approach to hematologic stem cell research.  相似文献   
8.
The functional coupling of protein synthesis and chaperone-assisted folding in vivo has remained largely unexplored. Here we have analysed the chaperonin-dependent folding pathway of actin in yeast. Remarkably, overexpression of a heterologous chaperonin which traps non-native polypeptides does not interfere with protein folding in the cytosol, indicating a high-level organization of folding reactions. Newly synthesized actin avoids the chaperonin trap and is effectively channelled from the ribosome to the endogenous chaperonin TRiC. Efficient actin folding on TRiC is critically dependent on the hetero-oligomeric co-chaperone GimC. By interacting with folding intermediates and with TRiC, GimC accelerates actin folding at least 5-fold and prevents the premature release of non-native protein from TRiC. We propose that TRiC and GimC form an integrated 'folding compartment' which functions in cooperation with the translation machinery. This compartment sequesters newly synthesized actin and other aggregation-sensitive polypeptides from the crowded macromolecular environment of the cytosol, thereby allowing their efficient folding.  相似文献   
9.
10.
The information responsible for biosynthesis of the lantibiotic subtilin is organized in an operon-like structure that starts with the spaB gene. The spaB gene encodes an open reading frame consisting of 1,030 amino acid residues, and it was calculated that a protein having a theoretical molecular mass of 120.5 kDa could be produced from this gene. This is consistent with the apparent molecular weight for SpaB of 115,000 which was estimated after sodium dodecyl sulfate-gel electrophoresis and identification with SpaB-specific antibodies. The SpaB protein is very similar to proteins EpiB and NisB, which were identified previously as being involved in epidermin and nisin biosynthesis. Upstream from SpaB a characteristic sigma A promoter sequence was identified. An immunoblot analysis revealed that SpaB expression was strongly regulated. No SpaB protein was detected in the early logarithmic growth phase, and maximum SpaB expression was observed in the early stationary growth phase. The expression of SpaB was strongly correlated with subtilin biosynthesis. Deletion mutations in either of two recently identified regulatory genes, spaR and spaK, which act as a "two-component" regulatory system necessary for growth phase-dependent induction of subtilin biosynthesis (C. Klein, C. Kaletta, and K. D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), also resulted in failure of SpaB expression. To investigate the intracellular localization of SpaB, vesicles of Bacillus subtilis were prepared. The SpaB protein cosedimented with the vesicle fraction and was released only after vigorous resuspension of the vesicles. Our results suggest that SpaB is membrane associated and that subtilin biosynthesis occurs at the cytoplasmic membrane of B. subtilis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号