首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   9篇
  国内免费   5篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   27篇
  2020年   6篇
  2019年   14篇
  2018年   15篇
  2017年   10篇
  2016年   11篇
  2015年   5篇
  2014年   17篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   8篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有164条查询结果,搜索用时 31 毫秒
1.
A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.  相似文献   
2.
3.
BACKGROUNDImpaired wound healing can be associated with different pathological states. Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide. Mesenchymal stem cells (MSCs) possess the ability to regenerate tissues by secreting factors involved in promoting cell migration, proliferation and differentiation, while suppressing immune reactions. Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIMTo enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODSHuman umbilical cord MSCs (hU-MSCs) were isolated and characterized by surface markers, CD105, vimentin and CD90. For preconditioning, hU-MSCs were treated with isorhamnetin after selection of the optimized concentration (5 µmol/L) by cytotoxicity analysis. The migration potential of these MSCs was analyzed by the in vitro scratch assay. The healing potential of normal, and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound. Normal, and preconditioned MSCs (IH + MSCs) were transplanted after 72 h of burn injury and observed for 2 wk. Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTSThe scratch assay analysis showed a significant reduction in the scratch area in the case of IH + MSCs compared to the normal untreated MSCs at 24 h, while complete closure of the scratch area was observed at 48 h. Histological analysis showed reduced inflammation, completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH + MSCs. Gene expression analysis was time dependent and more pronounced in the case of IH + MSCs. Interleukin (IL)-1β, IL-6 and Bcl-2 associated X genes showed significant downregulation, while transforming growth factor β, vascular endothelial growth factor, Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound, showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSIONPreconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation, and improving tissue architecture and wound healing. The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.  相似文献   
4.
Most damaging plant diseases have been caused by viruses in the entire world. In tropical and subtropical areas, the damage caused by plant virus leads to great economic and agricultural losses. Single stranded DNA viruses (geminiviruses) are the most perilous pathogens which are responsible for major diseases in agronomic and horticultural crops. Significantly begomoviruses and mastreviruses are the biggest genus of plant infecting viruses, transmitted though Bemisia tabaci and members of Cicadellidae respectively. Plants possesses some naturally existing chemicals term as phyto-chemicals which perform important functions in the plant. Some antioxidant enzymes are used by plants for self-defense upon foreign invasion of infection. This review explains the present perceptive of influence of viral infections on phyto-chemicals, oxidative enzymes and biochemical changes occurring in the plant. Viral infection mediated phyto-chemical changes in plants mainly includes: up and down regulation of photosynthetic pigment, increase in the concentration of phenolic compounds, elevation of starch content in the leaf and up & down regulation of anti-oxidative enzymes including (GPX) guaiacol peroxidase, (PPO) polyphenol oxidase, (APX) ascorbate peroxidase, (SOD) superoxide dismutase and (CTA) catalase. These changes lead to initiation of hypersensitive response, by thicken of the leaf lamina, lignification under the leaf surface, blocking to stomatal openings, systematic cell death, generation of reactive oxidative species (ROS), activation of pathogen mediated resistance pathways i.e., production of salicylic acid and jasmonic acid. Collectively all the physiological changes in the plant due to viral infection supports the activation of defense mechanism of the plant to combat against viral infection by limiting virus in specific area, followed with the production of barriers for pathogen, accumulation of starch in the leaf and excess production of (ROS). These strategies used by the plant to prevent the spread of virus in whole plant and to minimize the risk of severe yield loss.  相似文献   
5.

BReast CAncer gene 1 (BRCA1)—a tumor suppressor gene plays an important role in the DNA repair mechanism. Several BRCA1 variants perturb its structure and function, including synonymous and nonsynonymous single nucleotide polymorphisms (SNPs). In the present study, we performed in-silico analyses of nonsynonymous SNPs (nsSNPs) of the BRCA1 gene. In total, 122 nsSNPs were retrieved from the NCBI SNP database and in-silico analyses were performed using computational prediction tools: SIFT, PROVEAN, Mutation Taster, PolyPhen-2, MutPred, and ConSurf. Of these tools, SIFT, PROVEAN, and Mutation Taster predicted 61 out of 122 nsSNPs as “damaging”, based on structural homology analysis. PolyPhen-2 classified 22 nsSNPs as “probably damaging”. These nsSNPs were further analyzed by MutPred to predict basic molecular mechanisms of amino acid alteration. ConSurf analysis predicted eleven conserved amino acid residues with structural and functional consequences. We identified five amino acid residues in the RING finger domain (L22, C39, H41, C44, and C47) and two in the BRCT domain (P1771 and I1707) with the potential to deter the BRCA1 protein function. This study provides insights into the effect of nsSNPs and amino acid substitutions in BRCA1.

  相似文献   
6.
International Journal of Peptide Research and Therapeutics - Pseudomonas aeruginosa (P. aeruginosa) is a critical healthcare challenge due to its ability to cause persistent infections and the...  相似文献   
7.
International Journal of Peptide Research and Therapeutics - The original version of the article unfortunately contained a typo in co-author name.  相似文献   
8.
Haider  Saida  Sajid  Irfan  Batool  Zehra  Madiha  Syeda  Sadir  Sadia  Kamil  Noor  Liaquat  Laraib  Ahmad  Saara  Tabassum  Saiqa  Khaliq  Saima 《Neurochemical research》2020,45(11):2762-2774

Noise has always been an important environmental factor that induces health problems in the general population. Due to ever increasing noise pollution, humans are facing multiple auditory and non-auditory problems including neuropsychiatric disorders. In modern day life it is impossible to avoid noise due to the rapid industrialization of society. Continuous exposure to noise stress creates a disturbance in brain function which may lead to memory disorder. Therefore, it is necessary to find preventive measures to reduce the deleterious effects of noise exposure. Supplementation of taurine, a semi essential amino acid, is reported to alleviate psychiatric disorders. In this study noise-exposed (100 db; 3 h daily for 15 days) rats were supplemented with taurine at a dose of 100 mg/kg for 15 days. Spatial and recognition memory was assessed using the Morris water maze and novel object recognition task, respectively. Results of this study showed a reversal of noise-induced memory impairment in rats. The derangements of catecholaminergic and serotonergic levels in the hippocampus and altered brain antioxidant enzyme activity due to noise exposure were also restored by taurine administration. This study highlights the importance of taurine supplementation to mitigate noise-induced impaired memory via normalizing the neurochemical functions and reducing oxidative stress in rat brain.

  相似文献   
9.
Rapid, efficient, and robust quantitative analyses of dynamic apoptotic events are essential in a high-throughput screening workflow. Currently used methods have several bottlenecks, specifically, limitations in available fluorophores for downstream assays and misinterpretation of statistical image data analysis. In this study, we developed cytochrome-C (Cyt-C) and caspase-3/-8 reporter cell lines using lung (PC9) and breast (T47D) cancer cells, and characterized them from the response to apoptotic stimuli. In these two reporter cell lines, the spatial fluorescent signal translocation patterns served as reporters of activations of apoptotic events, such as Cyt-C release and caspase-3/-8 activation. We also developed a vision-based, tunable, automated algorithm in MATLAB to implement the robust and accurate analysis of signal translocation in single or multiple cells. Construction of the reporter cell lines allows live monitoring of apoptotic events without the need for any other dyes or fixatives. Our algorithmic implementation forgoes the use of simple image statistics for more robust analytics. Our optimized algorithm can achieve a precision greater than 90% and a sensitivity higher than 85%. Combining our automated algorithm with reporter cells bearing a single-color dye/fluorophore, we expect our approach to become an integral component in the high-throughput drug screening workflow.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号