首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  2015年   2篇
  2012年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1972年   2篇
  1953年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
Synopsis The filter feeding organ of cyprinid fishes is the branchial sieve, which consists of a mesh formed by gill rakers and tiny channels on the gill arches. In order to establish its possible role during growth we measured the following morphological gill raker parameters over a range of sizes in three cyprinid fishes, bream, white bream and roach: inter raker distance, bony raker length, raker width, cushion length and channel width. At any given standard length common bream has the largest inter raker distance, roach the lowest and white bream is intermediate. In the comb model of filter feeding the inter raker distance is considered to be a direct measure of the mesh size and retention ability (= minimal size of prey that can be retained) of a filter. For the three species under study there is a conflict between the comb model and experimental data on particle retention. Lammens et al. (1987) found that common bream has a large retention ability whereas roach and white bream have a much smaller one. A new model, the channel model (Hoogenboezem et al. 1991) has been developed for common bream; in this model the lateral gill rakers can regulate the mesh size of the medial channels on the other side of the gill slit. The present data indicate that this model is not appropriate for white bream and roach. At any given standard length white bream and roach only reach 70% of the raker length of common bream, which means that in this model the gill slits should to be very narrow during filter feeding. The gill rakers consist of a bony raker and a fleshy cushion. The bony rakers have a rather long needle-like part outside the cushion in bream, but not in white bream and roach which have blunt gill rakers. Blunt gill rakers are not suited to reduce the diameter of the medial channels. The comb model seems more appropriate for white bream and roach, but doubts about the validity of this simple model remain. The sum of the areas of the medial channels is an approximation of the area through which water flows in the filter. This channel area therefore gives an impression of the capacity or flow rate of the filter. With this capacity estimation and an estimation of energy consumption we calculated an energy ratio of filter feeding. The energy ratio decreases with increasing standard length with an exponent close to the expected exponent of -0.40. The energy ratio is highest in bream, intermediate in white bream and lowest in roach.  相似文献   
2.
Synopsis All living species occupy an ecological niche, and are positioned within a trophic hierarchy. Extinct organisms presumably held similar behavioral and coevolutionary characteristics in the past, and were susceptible to the same kinds of natural ecological pressures operating today. Paleoecological investigations are limited by the incompleteness of the fossil record, and particularly by a lack of behavioral data that are so fundamental to ecological studies of living communities and habitats. Opportunities to examine the coevolutionary structure of ancient communities from empirical data are extremely rare. One such opportunity is provided by the Lower Cretaceous Santana Formation of north-eastern Brazil, a series of richly fossiliferous strata approximately 110 million years old. Many fossil fishes from the Santana Formation contain identifiable prey, including decapod crustaceans and fishes. A trophic hierarchy of these organisms is reconstructed here, and their ecological relationships are discussed. Comparison is made with a similar fish fauna from the Upper Jurassic Solnhofen Limestone of Germany. Low-level, intermediate and high-level predators are identified in each fauna. Predator-prey relationships in the Santana fauna are strongly hierarchical, and are more focussed at the intermediate predator level than in Solnhofen. Comparison with a model of predator-prey relationships between fishes and benthic fauna of the Baltic Sea (which like the Araripe Basin represents a semi-enclosed environment) suggests that heavy predation on teleosts such asRhacolepis, occupying an intermediate trophic level, may have permitted benthic decapods to proliferate and exclude other benthic organisms. Less intense predation on fishes at the intermediate trophic level would allow their numbers to increase, thereby increasing the intensity of predation on the benthos at the base of the trophic hierarchy.  相似文献   
3.
To assess whether the species distinctions of Lake Tana's Labeobarbus spp. are supported by genetic information, microsatellite markers were used. A total of 376 Labeobarbus spp., belonging to 24 populations of 11 species from three regions of the lake (north, south and east), were sampled. Eight microsatellite markers were analysed. In general, differences between conspecific populations were smaller than differences between populations of different species. For six species, conspecific populations from different regions in the lake were consistently more similar than populations of other species from the same region. For four species this was not the case, while for one species two populations were similar, but different from the third population. River‐spawning species appeared to be more distinct than presumed lake spawners. On the species level, there was a significant correlation between genetic and morphological differentiation, especially in morphological aspects associated with ecological functioning. This suggests that genetic differentiation arose together with adaptive radiation, although the overall genetic differentiation among the Lake Tana Labeobarbus spp. is small.  相似文献   
4.
Dejen  E.  & Sibbing  F. A. 《Journal of fish biology》2003,63(S1):229-230
Gut contents of two co‐occurring species of 'small' diploid barbs (<10  L F cm) in Lake Tana revealed that zooplankton is the major diet component for B. tanapelagius (75% based on volume), but less prominent in B. humilis (40%). Functional response experiments in the laboratory were conducted to elucidate the mechanisms causing this difference. The type of functional response by the two 'small' barbs under different microcrustacean zooplankton densities (10, 20, 40, 60 and 80 ind.l−1) was examined. The functional response of B. tanapelagius to increasing prey densities corroborates with Holling Type II model, whereas B. humilis exhibits a Type III functional response. Predation rate is higher for B. tanapelagius at low zooplankton density (<40 ind.l−1) and equals the level of B. humilis at higher densities (>40 ind.l−1). This suggests that at lower zooplankton densities B. humilis is a less efficient forager on zooplankton prey items than B. tanapelagius . In Lake Tana average zooplankton density is relatively low (<35 ind.l−1). Under these food conditions, B. humilis is forced to feed on other food items (e.g. benthic invertebrates), whereas B. tanapelagius primarily feeds on zooplankton. The feeding potentials of the two 'small' barbs, as deduced from their morphology explain their different performances and their segregation in space and food resources.  相似文献   
5.
6.
Growth, biomass and production of two small barbs (Barbus humilis and Barbus tanapelagius) and their role in the food web of Lake Tana were investigated. From length–frequency distribution of trawl monitoring surveys growth coefficient, Φ′ values were estimated at 3.71–4.17 for B. humilis and 3.70–4.14 for B. tanapelagius, respectively. Values for B. humilis were confirmed in pond experiments. Mean biomass of the small barbs was 13.3 kg fresh wt ha−1, with B. humilis being most abundant in the littoral and sub-littoral zones, whereas B. tanapelagius was most abundant in the sub-littoral and pelagic zones. The two small barbs had a production of 53 kg fresh wt ha−1 year−1. Although their P/B ratios of about 4.0 were relatively high for small cyprinids, both their biomass and production were low in comparison with other small fish taxa in other tropical lakes. Of the zooplankton production only about 29% was consumed by the small barbs. However, they did not utilize calanoid copepods, which were responsible for approximately 57% of the zooplankton production and it is likely that small barb production was food limited during certain periods of the year. Piscivorous labeobarbs consumed about 56% of the small barbs production annually, but additionally, Clarias gariepinus, and many bird species were also preying on them. Therefore, limitation of Barbus production by predation during certain periods in the year cannot be excluded.  相似文献   
7.
With more than 2000 fish species the Cyprinidae is the largest family of vertebrates. Lake Tana, a large lake (3050 km2) situated in the NW‐ highlands of Ethiopia, harbours, as far as we know the only remaining intact species flock of large (max. 100 cm FL) cyprinid fishes (15 Barbus spp.). One of the most intriguing aspects of this endemic Barbus species flock is the large number of piscivores (8). Cyprinid fishes seem not well designed for piscivory, they lack teeth in the oral jaw, have a small slit‐shaped pharyngeal cavity and all lack a stomach with low pH for digesting large prey. Many barbs are benthivorous species, like the ancestral barb in Lake Tana's isolated system. Why then is piscivory, which is rare among cyprinids, so common in Lake Tana Barbus? The aim of present study was to compare the performance and techniques of these piscivorous Barbus with known piscivores from other fish families. We studied prey handling times over prey size, prey capture using high‐speed movies, and assessed the effect of prey size on performance and prey selection in the field. Performances were explained by functional morphology of their feeding system. Overall, Lake Tana's piscivorous Barbus perform relatively 'poor', compared to piscivores from other fish families. For example, Lake Tana's piscivores are only able to handle prey fish smaller than 16% of their own body length. However, Lake Tana lacks potential piscivorous competitors, rendering the piscivorous Barbus by far the 'best' and apparently highly successful. They have adapted to all available macro‐habitats (littoral, offshore pelagic and offshore benthic), using different techniques (ambush, pursuit and cruising), a unique scenario for barbs.  相似文献   
8.
A unique species flock of large barbs (Barbus spp.) from Lake Tana is presented, from the level of fish stocks to molecules. Evidence is given for the species status of 14 morphotypes of large barbs. They distinctly differ in: (1) head and body morphometrics, (2) food preferences, (3) distribution patterns, (4) maximal body size, (5) spawning area and period, and (6) molecular genetic characters. Most types show early morphological divergence at small size. Major Histocompatibility Complex (MHC) genes, encoding cell membrane proteins involved in defence against pathogens, were found to be diagnostic for the species' genetic identity. A strong selective pressure on particular amino acid positions in the MHC protein sequence most probably arose in response to different pathogen loads from the newly invaded ecological niches after formation of Lake Tana, ca. two million years ago.Arguments for a sympatric origin of this species flock are discussed. An evolutionary scenario suggests a riverine ancestral Barbus intermedius invading Lake Tana after its formation by volcanic blocking of the Blue Nile river and its isolation by waterfalls. Specialisation for particular food types and disruptive selection on many feeding structures are hypothesized as the evolutionary drive in speciation. The causal relationship between the diversity in feeding structures and food types is explained from experiments and models. As an example, the potential food niche of three barb species is predicted from parameter values measured from a large set of feeding structures and tested against the actual gut contents. The co-occurrence of eight piscivorous barb species is unique for cyprinid fish, which lack oral jaw teeth and a stomach. The significance of this aquatic ecosystem as a multidisciplinary evolutionary laboratory and the need for a wise balance between exploitation and conservation is stressed.  相似文献   
9.

1. 1. The kinetics of light-induced absorbance changes due to oxidation and reduction of cytochromes were measured in a suspension of intact cells of the unicellular red alga Porphyridium aerugineum. Absorbance changes in the region 540–570 nm upon alternating far-red light and darkness indicated the oxidation of cytochrome ƒ and reduction of cytochrome b563 upon illumination. The relative efficiencies of far-red and orange light indicated that both reactions were driven by Photosystem I.

2. 2. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with anaerobic cells and in alternating far-red and orange light indicated that cytochrome b563 reacts in a cyclic chain around Photosystem I, and that the reduced cytochrome does not react with oxygen or with another oxidized product of Photosystem II. The quantum requirement for the photoreduction was about 6 quanta/equiv at 700 nm. A low concentration of N-methylphenazonium methosulphate (PMS) enhanced the rate of reoxidation of cytochrome b563 in the dark. In the presence of higher concentrations of PMS a photooxidation, driven by Photosystem I, instead of reduction was observed. These observations suggest that PMS enhances the rate of reactions between reduced cytochrome b563 and oxidized products of Photosystem I.

3. 3. In the presence of carbonylcyanide m-chlorophenylhydrazone (CCCP) a light-induced decrease of absorption at 560 nm occurred. Spectral evidence suggested the photooxidation of cytochrome b559 under these conditions. Inhibition by DCMU and a relatively efficient action of orange light suggested that this photooxidation is driven by Photosystem II.

Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; P700, chlorophyllous pigment absorbing at 700 nm, primary electron donor of Photosystem I; PMS, N-methylphenazonium methosulphate  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号