首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   15篇
  国内免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  1992年   1篇
  1982年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
Chen S  Ward T 《Chirality》2004,16(5):318-330
A variety of compounds containing amines (i.e., amino acids, amino alcohols, etc.) were chemically derivatized with a variety of electrophilic tagging reagents to elucidate the chiral recognition sites on a teicoplanin-bonded chiral stationary phase (CSP) and on R-naphthylethylcarbamate-beta-cyclodextrin (RN-beta-CD)-bonded CSP. Solutes were separated under optimum chromatographic conditions on teicoplanin and RN-beta-CD CSPs for comparison using an acetonitrile-based mobile phase. It was noted that the size of the analyte or tagging reagent exerted a greater influence on compounds separated on teicoplanin than on RN-beta-CD when using the polar organic mode. This suggests that chiral recognition on teicoplanin CSP is more sensitive to size and indicates that the hydrophobic pocket of teicoplanin plays a significant role in chiral recognition in this mode. However, the type of functional groups had a greater impact than the size of analyte on separations obtained from RN-beta-CD phase in the polar-organic mode. Specifically, the pi-pi interaction was enhanced by derivatizing the aromatic ring of the tagging reagent with electron-withdrawing groups and thus altered the resolution substantially. For both phases, chiral recognition is most pronounced when the stereogenic center of the analyte is near the tagging moiety and surrounded by functional groups (e.g., carboxylic, etc.) which are favorable for hydrogen bonding.  相似文献   
2.
3.
Insertion and folding of polytopic membrane proteins is an important unsolved biological problem. To study this issue, lactose permease, a membrane transport protein from Escherichia coli, is transcribed, translated, and inserted into inside-out membrane vesicles in vitro. The protein is in a native conformation as judged by sensitivity to protease, binding of a monoclonal antibody directed against a conformational epitope, and importantly, by functional assays. By exploiting this system it is possible to express the N-terminal six helices of the permease (N(6)) and probe changes in conformation during insertion into the membrane. Specifically, when N(6) remains attached to the ribosome it is readily extracted from the membrane with urea, whereas after release from the ribosome or translation of additional helices, those polypeptides are not urea extractable. Furthermore, the accessibility of an engineered Factor Xa site to Xa protease is reduced significantly when N(6) is released from the ribosome or more helices are translated. Finally, spontaneous disulfide formation between Cys residues at positions 126 (Helix IV) and 144 (Helix V) is observed when N(6) is released from the ribosome and inserted into the membrane. Moreover, in contrast to full-length permease, N(6) is degraded by FtsH protease in vivo, and N(6) with a single Cys residue at position 148 does not react with N-ethylmaleimide. Taken together, the findings indicate that N(6) remains in a hydrophilic environment until it is released from the ribosome or additional helices are translated and continues to fold into a quasi-native conformation after insertion into the bilayer. Furthermore, there is synergism between N(6) and the C-terminal half of permease during assembly, as opposed to assembly of the two halves as independent domains.  相似文献   
4.
A monoclonal antibody against human cholesterol 7alpha-hydroxylase was produced, and the half-life of the enzyme was studied. Both the activity and protein mass of the enzyme were measured at timed intervals during microsomal incubation. The enzyme activity dropped rapidly; the half-life was 1, 1.7 and 3h in humans, rats and rabbits, respectively. In contrast, the protein mass, measured by immunoblotting, declined slowly; its half-life was 5h in the human and 9h in the rat and rabbit enzymes. This suggests that there may be vulnerable sites responsible for the enzyme activity. Addition of dithiothreitol (DTT) restored the decreased activity considerably, indicating that at least one sulfhydryl group is involved in the vulnerability. These results show considerable decrement in cholesterol 7alpha-hydroxylase activity due to sulfhydryl groups.  相似文献   
5.
本研究运用傅里叶变换红外光谱法,采集7份不同产地甜茶叶片的FTIR图谱,结合相关性系数和二阶导数方法对其红外光谱特征进行指认,并比较各供试甜茶的红外指纹图谱及甜茶苷含量间差异。研究结果表明,依据不同产地甜茶红外指纹图谱特征,可以将其归结为3大类Ⅰ类包括:金秀、荔浦、平南、象州及永福等地的甜茶,相关系数在0.992~0.999间;Ⅱ类包括第Ⅰ类型以外的广西其它采集地区的甜茶,相关性系数主要集中在0.984~0.990之间;Ⅲ类包括广东分布区,该区甜茶与广西分布区甜茶的相关系数均在0.986以下。供试甜茶与甜茶苷标准品的光谱特征比较结果表明,不同产地甜茶甜茶苷含量有较大差异。其中,广西金秀和广西平南产的甜茶叶片中甜茶苷含量最高,广西岑溪产的甜茶叶片中甜茶苷含量最低。所以,运用FTIR技术可以对不同产地甜茶进行分析并快速鉴别出不同产地甜茶中甜茶苷含量差异。本研究结果对广西地区甜茶的引种驯化和合理开发利用有一定指导意义。  相似文献   
6.
We report on a class of Escherichia coli SecY mutants that impair membrane protein folding. The mutants also up-regulate the Cpx/sigma(E) stress response pathways. Similar stress induction was also observed in response to a YidC defect in membrane protein biogenesis but not in response to the signal recognition particle-targeting defect or in response to a simple reduction in the abundance of the translocon. Together with the previous contention that the Cpx system senses a protein abnormality not only at periplasmic and outer membrane locations but also at the plasma membrane, abnormal states of membrane proteins are postulated to be generated in these secY mutants. In support of this notion, in vitro translation, membrane integration, and folding of LacY reveal that mutant membrane vesicles allow the insertion of LacY but not subsequent folding into a normal conformation recognizable by conformation-specific antibodies. The results demonstrate that normal SecY function is required for the folding of membrane proteins after their insertion into the translocon.  相似文献   
7.
为快速评价短序与阔叶十大功劳不同部位化学成分差异,本研究运用FTIR采集短序和阔叶十大功劳不同部位的红外光谱并比较短序与阔叶十大功劳不同部位盐酸小檗碱含量差异.研究结果显示,生物碱、黄酮和丁香酯等化学成分,短序十大功劳根、茎及叶片中均较阔叶十大功劳丰富,但是,多糖和苷类含量在两种十大功劳根中相当,在茎和叶片中均以阔叶十大功劳含量高,尤其是叶片中这种差异更明显.最后,与盐酸小檗碱标准品比较发现,2种十大功劳中盐酸小檗碱含量均以茎中最高,叶片中含量最低;2种十大功劳比较各部位盐酸小檗碱含量均以短序十大功劳中高.故运用FTIR技术可以快速找出2种十大功劳化学成分的差异,本研究结果将为十大功劳属植物资源合理开发利用及良种选育提供参考.  相似文献   
8.
Maintenance of healthy mitochondria prevents aging, cancer, and a variety of degenerative diseases that are due to the result of defective mitochondrial quality control (MQC). Recently, we discovered a novel mechanism for MQC, in which Mieap induces intramitochondrial lysosome-like organella that plays a critical role in the elimination of oxidized mitochondrial proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria). However, a large part of the mechanisms for MQC remains unknown. Here, we report additional mechanisms for Mieap-regulated MQC. Reactive oxygen species (ROS) scavengers completely inhibited MALM. A mitochondrial outer membrane protein NIX interacted with Mieap in a ROS-dependent manner via the BH3 domain of NIX and the coiled-coil domain of Mieap. Deficiency of NIX also completely impaired MALM. When MALM was inhibited, Mieap induced vacuole-like structures (designated as MIV for Mieap-induced vacuole), which engulfed and degraded the unhealthy mitochondria by accumulating lysosomes. The inactivation of p53 severely impaired both MALM and MIV generation, leading to accumulation of unhealthy mitochondria. These results suggest that (1) mitochondrial ROS and NIX are essential factors for MALM, (2) MIV is a novel mechanism for lysosomal degradation of mitochondria, and (3) the p53-Mieap pathway plays a pivotal role in MQC by repairing or eliminating unhealthy mitochondria via MALM or MIV generation, respectively.  相似文献   
9.
We identified a novel prostaglandin (PG)-specific organic anion transporter (OAT) in the OAT group of the SLC22 family. The transporter designated OAT-PG from mouse kidney exhibited Na+-independent and saturable transport of PGE2 when expressed in a proximal tubule cell line (S2). Unusual for OAT members, OAT-PG showed narrow substrate selectivity and high affinity for a specific subset of PGs, including PGE2, PGF, and PGD2. Similar to PGE2 receptor and PGT, a structurally distinct PG transporter, OAT-PG requires for its substrates an α-carboxyl group, with a double bond between C13 and C14 as well as a (S)-hydroxyl group at C15. Unlike the PGE2 receptor, however, the hydroxyl group at C11 in a cyclopentane ring is not essential for OAT-PG substrates. Addition of a hydroxyl group at C19 or C20 impairs the interaction with OAT-PG, whereas an ethyl group at C20 enhances the interaction, suggesting the importance of hydrophobicity around the ω-tail tip forming a “hydrophobic core” accompanied by a negative charge, which is essential for substrates of OAT members. OAT-PG-mediated transport is concentrative in nature, although OAT-PG mediates both facilitative and exchange transport. OAT-PG is kidney-specific and localized on the basolateral membrane of proximal tubules where a PG-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase, is expressed. Because of the fact that 15-keto-PGE2, the metabolite of PGE2 produced by 15-hydroxyprostaglandin dehydrogenase, is not a substrate of OAT-PG, the transport-metabolism coupling would make unidirectional PGE2 transport more efficient. By removing extracellular PGE2, OAT-PG is proposed to be involved in the local PGE2 clearance and metabolism for the inactivation of PG signals in the kidney cortex.  相似文献   
10.
No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO2 in the northern latitudes. In this study, we used atmospheric CO2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO2. We found significant (p < .05) increases in seasonal peak‐to‐trough CO2 amplitude (AMPP‐T) at nine stations, and in trough‐to‐peak amplitude (AMPT‐P) at eight stations over the last three decades. Most of the stations that recorded increasing amplitudes are in Arctic and boreal regions (>50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi‐model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO2 concentration (eCO2) and climate change are dominant drivers of the increase in AMPP‐T and AMPT‐P in the high latitudes. At the Barrow station, the observed increase of AMPP‐T and AMPT‐P over the last 33 years is explained by eCO2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO2 during carbon uptake period. Air‐sea CO2 fluxes (10% for AMPP‐T and 11% for AMPT‐P) and the impacts of land‐use change (marginally significant 3% for AMPP‐T and 4% for AMPT‐P) also contributed to the CO2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号