首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1981年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The relationship between dorsal root afferents and lumbar motoneurons has been studied in the isolated spinal cord of Rana ridibunda tadpoles. It was found that primary afferents do not form direct contacts with "primary" motoneurons innervating the axial musculature used by the larvae in swimming. Monosynaptic connections were revealed only between afferent fibres and lateral motor column motoneurons which innervate the developing hindlimb. The transmission in these synapses was dual: electrical and chemical. During the metamorphic stages when the locomotion is gradually taken over by the developing hindlimbs, an increase of the percentage of motoneurons receiving direct synaptic input from the primary afferents was observed.  相似文献   
2.
The effect of neurotensin on submaximally-stimulated hepatobiliary and pancreatic secretion was studied in 6 healthy subjects. An intravenous infusion of neurotensin 1.4 ± 0.3 pmol/kg/min, designed to reproduce plasma neurotensin immunoreactivity levels within the physiological range, produced a significant increase in pancreatic bicarbonate output. Plasma concentrations of pancreatic polypeptide rose by 83 ± 16 pmol/l and were associated with a small reduction in trypsin, but no significant change in bilirubin outputs.  相似文献   
3.
It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.  相似文献   
4.
Light and electronmicroscopic studies have been made on retinal structures in the lamprey labeled by horseradish peroxidase injected into the peripheral end of the cut optic nerve or to the midbrain tectum. On total retinal preparations, labeled axons were revealed together with dendrites and ganglionic cell bodies, as well as branching (presumably retinopetal) fibers, fine endings of which come closely to the labeled dendrites of the ganglionic cells. Electron microscopic data indicate that the labeled terminations of afferent fibers from synapses with both labeled and unlabeled dendrites, as well as with unlabeled neuronal bodies. It is concluded that centrifugal fibers in lamprey retina form contacts with the bodies and dendrites of the amacrine cells and dendrites of the ganglionic cells. Results of intracellular registration of responses of various retinal elements to the electrical stimulation of the optic nerve support this conclusion.  相似文献   
5.
Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.  相似文献   
6.
A 25-year-old previously asymptomatic pregnant woman at 36 weeks'' gestation was noticed to have repetitive monomorphic ventricular tachycardia. A dilated left ventricle with moderately reduced systolic function was found on echocardiographic examination. This is a very rare presentation of peripartum cardiomyopathy (PPCMP) presenting with repetitive monomorphic ventricular tachycardia.  相似文献   
7.
Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.  相似文献   
8.
Synaptic proteins synucleins are found in pathologic aggregates in human brain during neurodegenerative diseases and in some tumors. Normal functions of these proteins in synapses are still unclear. In the present study, we used cDNA cloning to determine amino acid sequences of synucleins in the central nervous system of river lamprey (Lampetra fluviatilis), which is used as a model organism to study molecular mechanisms of synaptic transmission. Three genes are identified. High similarity in amino acid sequences as compared to other vertebrate species is revealed. The bioinformatic analysis predicts that the river lamprey synucleins relate to the group of gamma-synucleins. High homology with human alpha-synuclein is reported. The hydrophobic region required for the formation of alpha-synuclein amyloid fibers is also present in the river lamprey synucleins. The latter suggests that this region appeared at early stages of evolution. The obtained amino acid sequences of synucleins in the river lamprey brain will allow generating novel molecular tools for dissecting physiological functions of these proteins.  相似文献   
9.
A recently silenced, duplicate PgiC locus in Clarkia   总被引:1,自引:0,他引:1  
Previous electrophoretic analysis showed that 17 diploid species of the wildflower Clarkia (Onagraceae) have two cytosolic isozymes of phosphoglucose isomerase (PGIC; EC 5.3.1.9), whereas 15 other diploid species have a single PGIC. Molecular studies revealed that the two isozymes in the former species are encoded by duplicate genes, PgiC1 and PgiC2, whereas the single isozyme in the latter is always encoded by PgiC1. Phylogenetic analysis of the nucleotide sequences implied that PgiC2 was silenced four times independently in the genus. Here we describe a psi PgiC2 from C. mildrediae, a species in which only PgiC1 is expressed. The discovery of the psi PgiC2 is significant because it confirms a formal prediction of the phylogenetic analysis. The psi PgiC2 includes 5,039 nucleotides corresponding to 18 of the 23 exons of PgiC, as well as the intervening introns and 3' nontranslated region. The absence of an increase of nucleotide substitutions in its "exons" suggests that the gene was silenced recently. The present study appears to be the first to establish that a specific duplicate gene locus regularly expressed in a group of related plant species has been silenced in one of them. The multiple independent silencings of PgiC2 suggest that it remained functional but inessential in ancestral lineages. We discuss the possibility that PgiC2 may have been preserved in these lineages by selection against mutants causing defective PGIC1- PGIC2 heterodimers.   相似文献   
10.
The synaptic responses induced in motoneurones by the stimulations of the dorsal root (DR), single afferent fibres and reticular formation (RF) were intracellularly recorded in the isolated frog spinal cord. It was shown that argiopine (the selective blocker of glutamate receptors of non-NMDA type) in concentrations ranging from 3.10(-7) to 1.10(-5) M effectively suppressed the di- and polysynaptic, but not the monosynaptic components of EPSP's induced by DR stimulation. The initial reaction to argiopine consisted of the increase of this monosynaptic component of EPSP. In the same concentrations range, argiopine reduced both mono- and polysynaptic EPSP, evoked by RF stimulation. 2-amino-phosphonovaleric acid (1.10(-4) M) did not affect, whereas the kinurenate (1--2.10(-3) M) completely blocked the amplitude of all kinds of synaptic responses. The various effects of argiopine on the responses induced by microstimulation of presynaptic nerve terminals were observed. The data obtained speak in favour of heterogeneity of monosynaptic excitatory inputs in the motoneurones of frog spinal cord. Being the glutamatergic by nature, the inputs differ in the properties of postsynaptic receptors. All of these receptors concerning to non NMDA-type can be divided to argiopine-sensitive and argiopine-resistant. The first seem to be involved in the monosynaptic connections of RF and the second--in those of primary afferents with motoneurones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号