首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   3篇
  2012年   12篇
  2011年   6篇
  2010年   4篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  1997年   1篇
排序方式: 共有92条查询结果,搜索用时 69 毫秒
1.
The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.  相似文献   
2.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   
3.
Photosynthesis Research - Recently, microalgae have attracted attention as sources of biomass energy. However, fatty acids from the microalgae are mainly unsaturated and show low stability in...  相似文献   
4.
Angiotensin II (Ang II) type 2 receptors (AT2Rs) have been associated with apoptosis. We hypothesized that AT2Rs are increased in stroke and may contribute effects of stroke to the brain. To test this, we have examined the expression of Ang II type 1 receptor (AT1R), AT2R and Ang II levels in the brain 24 h after transient middle cerebral artery occlusion (MCAO). The densities of AT1R and AT2R were measured by quantitative autoradiography (n=6). The levels of Ang II were measured by radioimmunoassay (RIA) (n=6) and by immunohistochemistry (n=3). AT1R levels on autoradiography showed a significant decrease (0.87±0.06 to 1.39±0.07 fmol/mg, p<0.01) in the ventral cortex of the stroke side compared to the cortices of non-stroke (NS) rats (n=4). There was no significant difference on ATIR in the contralateral verbal cortex of the stroke rats compared to NS control. In contrast, levels of AT2R in the ventral cortex of both the stroke and the contralateral sides were significantly increased (0.77±0.06, p<0.05 and 0.91±0.05, p<0.01 compared to 0.60±0.03 fmol/mg tissue, respectively). RIA showed that Ang II in the ventral cortex of both the stroke and the contralateral sides were significantly increased (241.63±47.72, p<0.01 and 165.51±42.59, p<0.05 compared to 76.80±4.10 pg/g tissue, respectively). Also, Ang II in the hypothalamus was significantly increased (179.50±17.49 to 118.50±6.65 pg/g tissue, p<0.05). Immunohistochemistry confirmed the increase of Ang II. These results demonstrate that brain Ang II and AT2Rs are increased whereas AT1Rs are decreased after transient MCAO in rats. We conclude that in stroke, Ang II and AT2R are activated and may contribute neural effects to brain ischemia.  相似文献   
5.
6.
Central and peripheral cardiovascular actions of apelin in conscious rats   总被引:13,自引:0,他引:13  
APJ was cloned as an orphan G protein-coupled receptor and shares a close identity with angiotensin II type 1 receptor (AT1R). Apelin is a peptide that has recently been identified as an endogenous ligand of the APJ. Apelin and APJ mRNA are expressed in peripheral tissue and the central nervous system. However, little is known about the effects of apelin in cardiovascular regulation. To examine the central and peripheral role of apelin, we injected the active fragment of apelin [(Pyr1)apelin-13] intracerebroventricularly (ICV, 5 and 20 nmol, n=6) or intravenously (IV, 20 and 50 nmol, n=4 or 5) in conscious rats. ICV injection of (Pyr1)apelin-13 dose-dependently increased mean arterial pressure (MAP) and heart rate (HR) (19+/-3 mm Hg and 162+/-26 bpm at 20 nmol). Pretreatment with ICV injection of the AT1R antagonist (CV-11974, 20 nmol) did not alter the apelin-induced increase in MAP and HR. IV injection of (Pyr1)apelin-13 also dose-dependently increased MAP and HR (13+/-2 mm Hg and 103+/-18 bpm at 50 nmol); however, the peripheral effects of apelin were relatively weak compared to its central effects. Expression of c-fos in the paraventricular nucleus (PVN) of hypothalamus was increased in the rat that received ICV injection of (Pyr1)apelin-13 but not in the rat that received IV injection of (Pyr1)apelin-13. These results suggest that apelin plays a role in both central and peripheral cardiovascular regulation in conscious rats, and that the cardiovascular effects of apelin are not mediated by the AT1R.  相似文献   
7.
Mano N  Nagaya Y  Saito S  Kobayashi N  Goto J 《Biochemistry》2004,43(7):2041-2048
Large-scale analysis of protein-protein interaction sites is especially needed in the postgenomic era. The combination of affinity labeling with mass spectrometry is a potentially useful high-throughput screening method for this purpose. However, reagents in current use are not ideal as some cause damage to the target molecule and others have poor solubility in physiologic aqueous buffers. In this paper, we describe a novel affinity labeling reagent, acyl adenylate, which is highly soluble in aqueous solutions and reacts in a pH-dependent manner. The adenylate of deoxycholic acid reacts with amino groups on the side chain of a lysine residue and at the N-terminus of proteins/peptides. The reactivity and stability of this reagent were investigated, and it was confirmed that, after formation of a reversible ligand-protein complex under weakly acidic conditions, derivatization with acyl adenylate occurred at the target site under weakly alkaline condition. We further demonstrated the utility of this reagent for affinity labeling using a monoclonal antibody with high affinity for deoxycholic acid. Competitive ELISA indicated that deoxycholic acid was labeled around the antibody ligand binding site, thus enabling the structural elucidation of the ligand-protein interaction. In addition, LC/ESI-MS/MS analysis of the labeled peptide obtained by enzymatic digestion and affinity extraction allowed the identification of the structure surrounding the antigen binding site.  相似文献   
8.
Group VIB Ca2+-independent phospholipase A2γ (iPLA2γ) is a membrane-bound iPLA2 enzyme with unique features, such as the utilization of distinct translation initiation sites and the presence of mitochondrial and peroxisomal localization signals. Here we investigated the physiological functions of iPLA2γ by disrupting its gene in mice. iPLA2γ-knockout (KO) mice were born with an expected Mendelian ratio and appeared normal and healthy at the age of one month but began to show growth retardation from the age of two months as well as kyphosis and significant muscle weakness at the age of four months. Electron microscopy revealed swelling and reduced numbers of mitochondria and atrophy of myofilaments in iPLA2γ-KO skeletal muscles. Increased lipid peroxidation and the induction of several oxidative stress-related genes were also found in the iPLA2γ-KO muscles. These results provide evidence that impairment of iPLA2γ causes mitochondrial dysfunction and increased oxidative stress, leading to the loss of skeletal muscle structure and function. We further found that the compositions of cardiolipin and other phospholipid subclasses were altered and that the levels of myoprotective prostanoids were reduced in iPLA2γ-KO skeletal muscle. Thus, in addition to maintenance of homeostasis of the mitochondrial membrane, iPLA2γ may contribute to modulation of lipid mediator production in vivo.  相似文献   
9.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号