首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  39篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2001年   4篇
  1989年   1篇
排序方式: 共有39条查询结果,搜索用时 0 毫秒
1.
2.
Experimental data on the mitochondrial ultrastructure and tissue respiration in root apex as well as metabolic activity of the organelles isolated from pea seedling roots after 5-day of clinorotation are presented. It was shown that mitochondrial condensation in the distal elongation zone correlated with an increased rate of oxygen uptake on 7%. We also observed increase in rate of malate oxidation and respiratory control ratio increased simultaneously with a decreased in efficiency of oxidative phosphorylation. Such character of mitochondrial rearrangements in simulated microgravity is assumed to be a consequence of adaptation to these conditions.  相似文献   
3.
This study deals with effects of hypertonic sucrose solutions on respiration and oxidative phosphorylation of intact mitochondria isolated from sugar beet (Beta vulgaris L.) taproots and etiolated pea (Pisum sativum L.) seedlings. Mitochondria from plants, like those of animals, showed a trend to inhibition of oxidative phosphorylation in hypertonic sucrose solutions. The increase in sucrose concentration from 0.5 to 1.0 M suppressed malate oxidation in the presence of glutamate in state 3 by a factor of 2.5–3.5 and diminished the respiratory control ratio by a factor of 1.5–2.0. Plant mitochondria turned out remarkably resistant to osmotic stress; they retained significant respiratory control and high ADP/O ratios in a hypertonic 1 M sucrose solution. Although the origin of the observed phenomenon remains unresolved and warrants further studies, it is evident that elevated resistance of plant mitochondria to osmotic stress might be significant for energy supply under extreme environmental conditions (upon drought and salinity) when the plant organism experiences dehydration with a concomitant increase in the cytoplasmic osmolarity.  相似文献   
4.
The effects of salicylic acid (SA) on mitochondrial respiration and generation of membrane potential across the inner membrane of mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.) and etiolated seedling cotyledons of yellow lupine (Lupinus luteus L.) were studied. When malate was oxidized in the presence of glutamate, low SA concentrations (lower than 1.0 mM) exerted predominantly uncoupling action on the respiration of taproot mitochondria: they activated the rate of oxygen uptake in State 4 (in the absence of ADP) and did not affect oxidation in State 3 (in the presence of ADP). In contrast, in lupine cotyledon mitochondria these SA concentrations inhibited oxygen uptake in the presence of ADP and much weaker activated substrate oxidation in State 4. Thus, SA (0.5 mM) reduced the respiratory control ratio according to Chance (RCR) by 25% in the taproots and 35% in cotyledons. When the concentration of phytohormone was increased (above 1.0 mM), malate oxidation in State 3 was inhibited and in State 4 — activated independently of the plant material used. In this case, the values of RCR and ADP/O were reduced by 50–60%. The effect of high SA concentrations (2 mM and higher) on malate oxidation depended on the duration of incubation and had a biphasic pattern: the initial activation of oxygen uptake was later replaced by its inhibition. The parallel studying the SA effect on the generation of membrane potential (ΔΨ) at malate oxidation in the mitochondria of beet taproots and lupine cotyledons showed that ΔΨ dissipation was observed because of SA uncoupling and inhibiting action on respiration. The degree of ΔΨ dissipation depended on the phytohormone concentration and duration on mitochondria treatment, especially at its high concentrations. In general, a correlation was found between the effects of SA on mitochondrial respiration and ΔΨ values in the coupling membranes. Furthermore, these results show that the responses of mitochondria to SA were determined not only by its concentration but also by treatment duration and evidently by the sensitivity to the phytohormone of mitochondria isolated from different plant tissues.  相似文献   
5.
The NAD content was determined in mitochondria isolated from sugar-beet roots at various stages of plant development. A high NAD content (7.6 ± 0.9 nmol/mg mitochondrial protein) was observed in the mitochondria of actively growing roots of 80–95-day-old plants, but it decreased ca. twofold by the end of the first year of plant development, before the roots were harvested for storage. The mitochondria isolated from roots stored at low temperature for two to three months and those after five to eight days of regrowth during the second year of plant development manifested an even lower NAD content (2.2 ± 0.4 and 2.0 ± 0.5 nmol/mg protein, respectively). A drastic decrease in the NAD content in mitochondria from stored roots did not result from the impairment of the inner membrane of these organelles and was evidently regulatory in its nature. The effect of developmental changes in the intramitochondrial NAD content on the malate oxidation pattern was studied. In the mitochondria of stored roots, the low NAD content limited the rate of malate oxidation in state 3, because the addition to the reaction mixture of exogenous NAD, which can be transported to the mitochondrial matrix, promoted malate oxidation by 30–50%. Rotenone inhibited malate oxidation in the stored-root mitochondria by more than 70%; in this case, the rate of rotenone-resistant malate oxidation in these organelles increased by several times in the presence of exogenous NAD. In the mitochondria of the growing root, exo-genous NAD did not affect the rate of malate oxidation, and rotenone inhibited it only by 25–35%. The analysis of the data obtained here and the published evidence suggests the existence of a universal mechanism of respiration control and the regulation of the functional activity of plant mitochondria. This mechanism acts through a change in the NAD content in the organelle matrix. This NAD can be used in the course of plant development, e.g., during the transition of sugar-beet-root cells in the dormant state, when the respiration rate must decline.  相似文献   
6.
In mitochondria isolated from growing (70–85 days) and dormant (stored for 8–12 weeks) sugar beet (Beta vulgaris L.) roots, activities of superoxide dismutase (SOD) and enzymes of the ascorbate-glutathione cycle were determined. The activity of SOD, the enzyme involved in superoxide detoxification, was much higher in mitochondria of the growing root, whereas activities of ascorbate peroxidase (APO) and glutathione reductase (GR), key enzymes of the ascorbate-glutathione cycle involved in the hydrogen peroxide degradation, increased substantially in mitochondria of dormant storage roots. Catalase (CAT) activity was detected in the fraction of root mitochondria purified in the sucrose density gradient, which activity was inhibited by cyanide by 85–90% and much weaker, by aminotriazol (by 30–35%). Submitochondrial localization of APO and CAT was analyzed using proteinase K. It was established that a substrate-binding APO center is localized on the external side of the inner membrane, whereas CAT is localized in the mitochondrial matrix. A possible role of mitochondria as ROS (hydrogen peroxide) acceptors in the cells of storage parenchyma of the stored root is discussed.  相似文献   
7.
In the present work, we studied the influence of water (osmotic) stress on mitochondrial metabolic activity in etiolated pea (Pisum sativum L.) seedlings. Three-day-old pea seedlings were subjected to stress by placing their roots in 0.6 M mannitol for 48 h. Epicotyl growth was severely suppressed, and tissue water content was decreased. We revealed the negative influence of the water stress on mitochondrial metabolic activity of seedlings, which effect was retained also after organelle isolation. In particular, in the mitochondria of stressed seedlings, the rate of oxidation of malate and other respiratory substrates (in state 3) was severely decreased, as well as respiratory control ratio. The rate of proline oxidation was reduced most seriously (by 70%). The efficiency of oxidative phosphorylation, according to the ADP/O ratio was not changed or was increased as compared to mitochondria in control plants. Activation of CN-resistant oxidase and other alternative pathways of electron transport in the mitochondrial electron-transport chain in stressed plants were not observed. In the epicotyl tissues under water stress, no MDA was accumulated and proline accumulation was insignificant. The role of mitochondria in adaptation responses of young seedlings is discussed.  相似文献   
8.
Doklady Biochemistry and Biophysics - Melatonin is a signaling molecule that mediates multiple stress-dependent reactions. Under photooxidative stress conditions generating intensive ROS...  相似文献   
9.
Effects of cyanide and rotenone were examined on respiration (oxygen uptake) in mitochondria isolated from sugar beet (Beta vulgaris L.) taproots at various stages of plant growth and development. In mitochondria from growing and cool-stored taproots, the ability of cyanide-resistant, salicylhydroxamic acid-sensitive alternative oxidase (AO) to oxidize malate, succinate, and other substrates of tricarboxylic acid cycle (TCA) was low and constituted less than 10% compared to predominant activity of the cytochrome oxidase pathway during State 3 respiration. Artificial aging of storage tissue (2-day incubation of tissue sections under high humidity at 20°C) substantially activated AO, but the highest capacity (V alt) of this pathway of mitochondrial oxidation was only observed in the presence of pyruvate and a reducing agent dithiothreitol. At the same time, mitochondria from growing taproots exhibited high rates of rotenone-resistant respiration, and these rates gradually declined during plant growth and development. The slowest rates of this respiration were observed during oxidation of NAD-dependent TCA substrates in mitochondria from dormant storage organ. The results are discussed in relation to significance of alternative electron transport pathways during growth and storage of sugar beet taproots.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号