排序方式: 共有101条查询结果,搜索用时 0 毫秒
1.
To identify salt stress-responsive genes, we constructed a cDNA library with the salttolerant rice cultivar, Lansheng. About 15000 plasmids were extracted and dotted on filters with Biomeck 2000 HDRT system or by hand. Thirty genes were identified to display altered expression levels responding to 150 mmol/L NaCl. Among them eighteen genes were up-regulated and the remainders downregulated. Twenty-seven genes have their homologous genes in GenBank Databases. The expression of twelve genes was studied by Northern analysis. Based on the functions, these genes can be classified into five categories, including photosynthesis-related gene, transportrelated gene, metabolismrelated gene, stress-or resistancerelated gene and the others with various functions. The results showed that salt stress influenced many aspects of rice growth. Some of these genes may play important roles in plant salt tolerance. 相似文献
2.
Jun Liu Da Ha Zongming Xie Chunmei Wang Huiwen Wang Wanke Zhang Jinsong Zhang Shouyi Chen 《遗传学报》2008,35(7):441-449
Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression. 相似文献
3.
4.
5.
To identify salt stress-responsive genes, we constructed a cDNA library with the salt-tolerant rice cultivar, Lansheng. About 15000 plasmids were extracted and dotted on filters with Biomeck 2000 HDRT system or by hand. Thirty genes were identified to display altered expression levels responding to 150 mmol/L NaCl. Among them eighteen genes were up-regulated and the remainders down-regulated. Twenty-seven genes have their homologous genes in Gen-Bank Databases. The expression of twelve genes was studied by Northern analysis. Based on the functions, these genes can be classified into five categories, including photosynthesis-related gene, transport-related gene, metabolism-related gene, stress- or resistance-related gene and the others with various functions. The results showed that salt stress influenced many aspects of rice growth. Some of these genes may play important roles in plant salt tolerance. 相似文献
6.
7.
By using differential display PCR (DD-PCR) technique, two salt-inducible and one salt-repressed cDNA fragments were isolated from rice. The three cDNA fragments were characterized respectively as partial sequence of rice S-adenosylmethionine decarboxylase (SAMDC) gene, a new member of translation elongation factor 1A gene (namedREF1 A), and a novel gene whose function is unknown (namedSRG1). The full-length cDNA of SAMDC gene (namedSAMDC1) was further isolated by RT-PCR approach and the deduced polypeptide was found to be homologous to SAMDC proteins of other plants, yeast and buman. Northern hybridization revealed that expression of SAMDCl and REFlA was induced, while SRGl was dramatically repressed, by salinity stress. Southern blot analysis demonstrated that SAMDCl and SRGl were present as a single copy gene in rice genome, whereas riceREF1 A gene was organized as a gene family. TheREF1 A,SAMDC1, andSRG1 genes were located on chromosome 3,4, and 6 respectively by RFLP mapping approach using ZYQ8/JX17 DH population and RFLP linkage maps. Project supported by the National “863” High-Technology Program. 相似文献
8.
Shouyi Hu Jiayi Zhang Qingqing Ji Sujie Xie Jingnuo Jiang Haitao Ni Xingying He Yanlong Yang Minjuan Wu 《Cell biology international》2024,48(2):154-161
Alopecia areata (AA) is a complex genetic disease that results in hair loss due to an autoimmune-mediated attack on the hair follicle. Mesenchymal stem cells (MSCs) have great potential to induce hair regeneration due to their strong secretion ability and multidirectional differentiation. Recent studies have revealed that the therapeutic potential of MSCs comes from their secretion ability, which can produce large amounts of bioactive substances and regulate the key physiological functions of subjects. The secretion products of MSCs, such as vesicles, exosomes, and conditioned media, have significant advantages in preparing of biological products derived from stem cells. Human umbilical cord mesenchymal stem cells (uMSCs) are the best choice for exosome production. uMSCs are obtained from the human umbilical cord. The umbilical cord is easy to obtain, and the efficiency of uMSCs isolation and culture higher than that of obtaining MSCs from bone marrow or adipose tissue. In this study, we investigated the effects of exosomes released from uMSCs in AA mice. In summary, due to easy isolation and cultivation, simple preparation, and convenient storage, it is possible to obtain uMSCs, or uMSCs exosomes for research and clinical treatment. 相似文献
9.
Xuesong Zhang Huawei Dong Yong Liu Junxia Han Shouyi Tang Jingna Si 《Journal of cellular physiology》2019,234(9):15098-15107
10.