首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   19篇
  96篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
An animal model for the human condition of mitochondrial myopathy has been established and characterized physiologically and biochemically. The NADH: coenzyme Q reductase inhibitor diphenyleneiodonium [Bloxham (1979) Biochem. Soc. Trans. 7, 103-106] was either infused acutely in vivo into rat hind limb or injected chronically into rats. Both modes of delivery resulted in a reduced muscle oxidative capacity and increased fatigue. Analysis of muscle metabolites by h.p.l.c. and 31P-n.m.r. indicated that ATP concentrations were similar to control values during periods of stimulation and these were maintained by the phosphocreatine pool. During the recovery period after muscle stimulation in the experimental animals the muscle pH remained depressed and the rate of phosphocreatine synthesis was markedly delayed as compared with controls. Factors thought to be involved in the fatigue response are discussed in relation to this model.  相似文献   
2.
Rats were fed on a diet containing 1% beta-guanidinopropionic acid (GPA), a creatine substrate analogue, for 6-10 weeks to deplete their muscle of creatine. This manipulation was previously shown to give a 90% decrease in [phosphocreatine] in skeletal and cardiac muscle and a 50% decrease in [ATP] in skeletal muscle only. Maximal activities of creatine kinase and of representative enzymes of aerobic and anaerobic energy metabolism were measured in the superficial white, medial and deep red portions of the gastrocnemius muscle, in the soleus and plantaris muscle and in the heart. Fast-twitch muscles were smaller in GPA-fed animals than in controls, but the size of the soleus muscle was unchanged. The activities of aerobic enzymes increased by 30-40% in all fast-twitch muscle regions except the superficial gastrocnemius, but were unchanged in the soleus muscle. The activities of creatine kinase and phosphofructokinase decreased by 20-50% in all skeletal-muscle regions except the deep gastrocnemius, and the activity of glycogen phosphorylase generally paralleled these changes. There were no significant changes in the activities of any of the enzymes measured in the heart. The glycogen content of the gastrocnemius-plantaris complex was increased by 185% in GPA-fed rats. The proportion of Type I fibres in the soleus muscle increased from 81% in control rats to 100% in GPA-fed rats, consistent with a previous report of altered isometric twitch characteristics and a decrease in the maximum velocity of shortening in this muscle [Petrofsky & Fitch (1980) Pflugers Arch. 384, 123-129]. We conclude that fast-twitch muscles adapt by a combination of decreasing diffusion distances, increasing aerobic capacity and decreasing glycolytic potential. Slow-twitch muscles decrease glycolytic potential and become slower, thus decreasing energy demand. These results suggest that persistent changes in the [phosphocreatine] and [ATP] are alone sufficient to alter the expression of enzyme proteins and proteins of the contractile apparatus, and that fibre-type-specific thresholds exist for the transformation response.  相似文献   
3.
We have recently found that matrix metalloproteinases (MMPs) are targets for T-cell and B-cell reactivity in experimental arthritis. In the present article, we investigate whether modulation of MMP-specific T-cell responses could influence the course of adjuvant arthritis (AA). Lewis rats were treated nasally with MMP peptides prior to or after AA induction. Administration of the MMP-10 or the MMP-16 peptide prior to AA induction reduced the arthritic symptoms. In contrast, administration of the MMP-10 peptide after AA induction aggravated the arthritic symptoms. The present study shows the possible usefulness of MMP peptides for immunotherapy. However, a clear understanding of proper timing of peptide administration is crucial for the development of such therapies.  相似文献   
4.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
5.
Abstract: The role of voltage-sensitive Ca2+ channels in mediating Ca2+ influx during ischemia was investigated in NG108-15 cells, a neuronal cell line that does not express glutamate-sensitive receptor-mediated Ca2+ channels. Concurrent 31P/19F and 23Na double-quantum filtered (DQF) NMR spectra were used to monitor cellular energy status, intracellular [Ca2+] ([Ca2+]i), and intracellular Na+ content in cells loaded with the calcium indicator 1,2-bis-(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid (5FBAPTA) during ischemia and reperfusion. Cells loaded with 5FBAPTA were indistinguishable from unloaded cells except for small immediate decreases in levels of phosphocreatine (PCr) and ATP. Ischemia induced a steady decrease in intracellular pH and PCr and ATP levels, and a steady increase in intracellular Na+ content; however, a substantial increase in [Ca2+]i (about threefold) was seen only following marked impairment of cellular energy status, when PCr was undetectable and ATP content was reduced to 55% of control levels. A depolarization-induced increase in [Ca2+]i could be completely blocked by 1 µM nifedipine, whereas up to 20 µM nifedipine had no effect on the increase in [Ca2+]i seen during ischemia. These data demonstrate that voltage-gated Ca2+ channels do not mediate significant Ca2+ flux during ischemia in this cell line and suggest an important role for Ca2+i stores, the Na+/Ca2+ antiporter, or other processes linked to cellular energy status in the increase in cytosolic Ca2+ level during ischemia.  相似文献   
6.
Effects of medium viscosity on kinetic parameters of poly(U) hydrolysis catalyzed by RNase from Bac. intermedius 7P (binase) were studied in solutions of sucrose (4-50 wt. %) and glycerol (35-62 wt. %) in Tris--sodium acetate buffer (pH 7.5) at 25 degreesC. The rate constant of reaction kcat was practically unchanged over a wide range of viscosities (1-15 cP for sucrose and 2.5-3 cP for glycerol). In glycerol solutions, kcat slightly increased with viscosity increase from 4 to 10 cP. Addition of NaCl to the buffer medium resulted in an inhibitory effect of Na+ on kcat, prevented by 50% sucrose or 60% glycerol. It is concluded that binase-catalyzed poly(U) cleavage occurs through a "tense"-substrate mechanism, similarly to reactions catalyzed by alpha-chymotrypsin, trypsin, and laccase.  相似文献   
7.
8.
The maximum activity of creatine kinase in vitro is similar in the pectoralis major muscle of the chicken and the duck. However, the flux (phosphocreatine to ATP) as measured by 31P saturation transfer NMR in vivo is almost 2-fold higher in the duck. This apparent discrepancy can be accounted for by the differences in the cytosolic free ADP concentrations in resting muscle.  相似文献   
9.
clk-1 has been identified and characterized in the nematode Caenorhabditis elegans as a gene that affects the rates, regularity, and synchrony of physiological processes. The CLK-1 protein is mitochondrial and is required for ubiquinone biosynthesis in yeast and in worms, but its biochemical function remains unclear. We have studied the expression of murine mclk1 in a variety of tissues, and we find that the pattern of mclk1 mRNA accumulation closely resembles that of mitochondrial genes involved in oxidative phosphorylation. The pattern of protein accumulation, however, is sharply distinct in some tissues; mCLK1 appears relatively enriched in the gut and depleted in the nervous tissue. We also show that mCLK1 is synthesized as a preprotein that is imported into the mitochondrial matrix, where a leader sequence is cleaved off and the protein becomes loosely associated with the inner membrane. However, in contrast to all known mitochondrial proteins that contain a cleavable pre-sequence, the import of mCLK1 does not require a mitochondrial membrane potential.  相似文献   
10.
Human SCO1 and SCO2 are metallochaperones that are essential for the assembly of the catalytic core of cytochrome c oxidase (COX). Here we show that they have additional, unexpected roles in cellular copper homeostasis. Mutations in either SCO result in a cellular copper deficiency that is both tissue and allele specific. This phenotype can be dissociated from the defects in COX assembly and is suppressed by overexpression of SCO2, but not SCO1. Overexpression of a SCO1 mutant in control cells in which wild-type SCO1 levels were reduced by shRNA recapitulates the copper-deficiency phenotype in SCO1 patient cells. The copper-deficiency phenotype reflects not a change in high-affinity copper uptake but rather a proportional increase in copper efflux. These results suggest a mitochondrial pathway for the regulation of cellular copper content that involves signaling through SCO1 and SCO2, perhaps by their thiol redox or metal-binding state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号