首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   9篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   11篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1975年   2篇
  1972年   4篇
  1961年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
NADPH2 and ATP competitively inhibit sweet potato glucose 6-phosphatedehydrogenase with NADP and glucose 6-phosphate (G6P), respectively.At pH 8.0, a Lineweaver-Burk plot of the reciprocal rate againstreciprocal G6P concentration was concave downwards in the presenceand absence of ATP, whereas a double reciprocal plot followedthe Michaelis-Menten relationship at pH 7.0, irrespective ofthe presence of ATP. Many of the other metabolic intermediatestested had no effects on the enzyme reaction. 1 This paper constitutes Part 96 of the Phytopathological Chemistryof Sweet Potato with Black Rot and Injury. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo Bunkyo-ku, Tokyo 113. (Received October 20, 1971; )  相似文献   
2.
3.
A Ca2+-dependent protein kinase (CDPK) that has been partiallypurified and characterized previously [Yuasa and Muto (1992)Arch. Biochem. Biophys. 296: 175] was further purified to about20,000-fold from the soluble fraction of Dunaliella tertiolecta.The enzyme preparation contained 60- and 52-kDa polypeptidesboth of which phosphorylated casein as a substrate. Both polypeptidesshowed a Ca2+-dependent increase in mobility during SDS-PAGEand 45Ca2+-binding activity after SDS-PAGE and electroblottingonto a nitrocellulose membrane, suggesting that both the 60-and 52-kDa CDPKs directly bind Ca2+. The protein kinase inhibitors,K-252a and staurosporine, inhibited the CDPK competitively withrespect to ATP. An antibody raised against the 60-kDa CDPK crossreactedwith both the 60- and 52-kDa polypeptides. Both molecular specieswere autophosphorylated in the presence of Ca2+, and a highlyphosphorylated 80-kDa band appeared in addition to these phosphorylatedbands at 60 and 52 kDa in SDS-PAGE. However, the specific activityof CDPK was not changed by prior autophosphorylation when theautophosphorylated enzyme was assayed as a mixture of thesephosphorylated molecular species. Only the 60-kDa polypeptidewas immunodetected in subcellular fractions of Dunaliella cells.The 52-kDa polypeptide increased during storage of the enzyme.These results suggest that the 52-kDa polypeptide is a proteolyticartifact produced during purification. Immunoreactive bandsof 60-kDa were detected in extracts of several green algae butnot in extracts of higher plants or a brown alga. 1This research was partly supported by Grants-in-Aid from theMinistry of Education, Science and Culture, Japan (No. 06454013and 06304023) and Research Fellowship of the Japan Society forthe Promotion of Science for Young Sciencists. 2Research Fellow (PD) of the Japan Society for the Promotionof Science.  相似文献   
4.
The proteins of the secretory granules of the rat parotid gland were characterized by sodium dodecylsulfate gel electrophoresis, by chromatography of [3H]prolinelabeled proteins on DEAE-cellulose and by amino acid analysis.Sodium dodecylsulfate gel electrophoresis of the secretory granule content showed five principal proteins and a limited number of minor components. Only two of the principal bands could be identified as known secretory enzymes of the parotid gland. One was identified as the α-amylase and one as deoxyribonuclease. Peroxidase and ribonuclease form minor portions of the secretory proteins.The other three major proteins constitute, together, about 60% by weight, of the secretory granule content proteins. Of these, one which represents more than 30% of the total granule protein was found to contain uniquely high amounts of leucine residues (21 mole%). Another one of these principal proteins was relatively rich in cysteine residues (7 mole%).The fifth principal protein was found to contain high amounts of proline (28 mole%) glutamic acid (17 mole%) and glycine (18 mole%) residues. Its amino acid composition was very similar to that of the proline-rich proteins that were previously shown to be present in the membrane isolated from these granules. This protein, however, differed from the “membranous” proline-rich proteins by several criteria.Two minor glycoproteins of the secretory granule content were also found to be rich in proline residues (37 mole%). As with the other proline-rich proteins of the granule, they contained no sulphur-containing amino acids, stained faintly pink with Coomassie Blue and were underestimated by the Lowry method. They differ however, from all the other proline-rich proteins of the granule by having a significantly higher content of threonine, less glycine (9 mole%) and much less glutamic acid (3 mole%).Of the principal proteins, only the deoxyribonuclease and the half-cystine-rich proteins were positively stained by periodic acid Schiff staining.The possible functions of the leucine-rich, the half cystine-rich and the various proline-rich proteins are discussed.  相似文献   
5.
Four π‐extended phosphoniumfluorene electrolytes (π‐PFEs) are introduced as hole‐blocking layers (HBL) in inverted architecture planar perovskite solar cells with the structure of ITO/PEDOT:PSS/MAPbI3/PCBM/HBL/Ag. The deep‐lying highest occupied molecular orbital energy level of the π‐PFEs effectively blocks holes, decreasing contact recombination. It is demonstrated that the incorporation of π‐PFEs introduces a dipole moment at the PCBM/Ag interface, resulting in significant enhancement of the built‐in potential of the device. This enhancement results in an increase in the open‐circuit voltage of the device by up to 120 mV, when compared to the commonly used bathocuproine HBL. The results are confirmed both experimentally and by numerical simulation. This work demonstrates that interfacial engineering of the transport layer/contact interface by small molecule electrolytes is a promising route to suppress nonradiative recombination in perovskite devices and compensates for a nonideal energetic alignment at the hole‐transport layer/perovskite interface.  相似文献   
6.
7.
Salts at high concentrations may cause oxidative damage to plant cells since many studies indicated the involvement of reactive oxygen species in salt-stress response. Recently, we have demonstrated that treatment of tobacco ( Nicotiana tabacum ) cell suspension culture with various salts result in an immediate burst of superoxide production via activation of NADPH oxidase by ions of alkali metals (Li+, Na+, K+), alkali earth metals (Mg2+, Ca2+) or lanthanides (La3+, Gd3+). In this study, we tested the effect of extracellular supplementation of Zn2+ and Mn2+ on the cation-induced oxidative burst in tobacco cell suspension culture, measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent. Extracellular supplementation of Zn2+ and Mn2+ inhibited the generation of superoxide in response to addition of salts. Although both Zn2+ and Mn2+ inhibited the salt-induced generation of superoxide, the modes of inhibition by those ions seemed to be different since Mn2+ simply inhibited total production of superoxide while Zn2+ inhibited the early phase of superoxide production and induced the slow release of superoxide. Roles of Mn2+ and Zn2+ in protection of plant cells from salt stress, as an effective superoxide scavenger and an effective inhibitor of plasma membrane-bound NADPH oxidase, respectively, are discussed.  相似文献   
8.
We obtained spectroscopic evidence in support of salicylate-dependent inactivation of horseradish peroxidase-C. Addition of salicylate to the enzyme arrested at a temporal inactive state (Compound III) in the presence of H2O2, resulted in rapid and irreversible inactivation of the enzyme yielding verdohemoproteins (P-670). Multiple roles for salicylate in peroxidase-catalyzed reactions are discussed.  相似文献   
9.
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.  相似文献   
10.
Changes in the amount of heat shock-related ubiquitinated proteins in Chlamydomonas were investigated during the cell cycle and gamete induction. In a division-synchronized culture induced by periodic illumination, the amount of the 28-kDa ubiquitinated protein increased during the dark phase. This increase correlated with the increase of total DNA. Such an increase was repressed when nuclear DNA replication was inhibited with aphidicolin. These results suggest that ubiquitination to form the 28-kDa protein is involved in nuclear DNA replication or during the cell cycle. The amount of 31-kDa ubiquitinated protein gradually increased throughout the light phase and decreased in the dark phase. The amount of 28-kDa ubiquitinated protein also increased during gamete induction caused by nitrogen starvation, while that of the 31-kDa did not. These results suggest that the change of ubiquitination of 28-kDa protein mat play a fundamental role in the cell cycle and gamete induction in Chlamydomonas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号