首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  8篇
  2017年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1987年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
South African higher education has faced much structural transformation since the dismantling of apartheid, and yet remains a racialized space. Despite a stated commitment to transformation in university policy nationally, lay discourses of transformation are highly contested. In these debates, black students are often represented in stigmatizing ways; which affect students’ self-esteem and academic performance. This paper explores black students’ experiences of transformation at the University of Cape Town (UCT), a previously “white only” university, based on the results of a photovoice project. The data analysed are drawn from focus groups, personal reflections, photographs and written stories exploring their experiences at UCT. The findings suggest that there is a failure of transformation at UCT, characterized by the dominance of whiteness in the institution. The paper also discusses how many students internalize the negative stereotypes they encounter whilst others use coping mechanisms and strategies to resist the discourse of black inferiority.  相似文献   
2.
Preller A  Kessi E  Ureta T 《FEBS letters》2007,581(4):663-666
Besides the classic direct route, frog oocytes incorporate glucosyl units into glycogen by the so-called indirect pathway. The operation of both pathways depends on glucose availability. Below 0.5 mM glucose (calculated intracellular concentration), the indirect route accounts for 90% of polysaccharide formation, while the direct pathway supports 70% of total glucose incorporation when administered glucose is above 1.5 mM. A sigmoidal curve was obtained for the direct pathway with n(H)=2.04, and half saturation was reached at 2.6 mM glucose. The curve for the indirect route presented an n(H) of 1.15 and an S(0.5) of 0.9 mM glucose.  相似文献   
3.
Chromatophores from Rhodospirillum rubrum were solubilized using the detergent 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC). The solubilization curves are sigmoidal reaching a plateau at a detergent/protein ratio of 2–3 mol/mg corresponding to 75–90% solubilized protein. The BChl-binding proteins are stable over a large range of DHPC/protein ratios. A complex of BChl-binding proteins containing both LHI- and RC-polypeptides (LHI-RC-complex) was purified using a two step procedure. RC photochemical activity as well as absorption and near-IR CD spectra showed the complex to be active and stable after purification in presence of DHPC.Abbreviations ATPase adenosine triphosphatase - BChI bacteriochlorophyll - DHPC 1,2-diheptanoyl-sn-phosphatidylcholine - DNAse deoxyribonuclease - INT 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride - LDAO lauryl-N,N-dimethylamine-N-oxide - LHI-complex light harvesting complex - PMSF phenylmethylsulfonyl fluoride - RC-complex reaction center complex - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TCA trichloroacetic acid This work is dedicated to the memory of Prof. D. I. Arnon.  相似文献   
4.
The effect of selenite on growth kinetics, the ability of cultures to reduce selenite, and the mechanism of detoxification of selenium were investigated by using Rhodospirillum rubrum. Anoxic photosynthetic cultures were able to completely reduce as much as 1. 5 mM selenite, whereas in aerobic cultures a 0.5 mM selenite concentration was only reduced to about 0.375 mM. The presence of selenite in the culture medium strongly affected cell division. In the presence of a selenite concentration of 1.5 mM cultures reached final cell densities that were only about 15% of the control final cell density. The cell density remained nearly constant during the stationary phase for all of the selenite concentrations tested, showing that the cells were not severely damaged by the presence of selenite or elemental selenium. Particles containing elemental selenium were observed in the cytoplasm, which led to an increase in the buoyant density of the cells. Interestingly, the change in the buoyant density was reversed after selenite reduction was complete; the buoyant density of the cells returned to the buoyant density of the control cells. This demonstrated that R. rubrum expels elemental selenium across the plasma membrane and the cell wall. Accordingly, electron-dense particles were more numerous in the cells during the reduction phase than after the reduction phase.  相似文献   
5.
Various mechanisms have been proposed to explain the biological dissimilatory reduction of selenite (SeO3(2-)) to elemental selenium (Se(o)), although none is without controversy. Glutathione, the most abundant thiol in the eukaryotic cells, the cyanobacteria, and the alpha, beta, and gamma groups of the proteobacteria, has long been suspected to be involved in selenium metabolism. Experiments with the phototrophic alpha proteobacterium Rhodospirillum rubrum showed that the rate of selenite reduction was decreased when bacteria synthesized lower than normal levels of glutathione, and in Rhodobacter sphaeroides and Escherichia coli the reaction was reported to induce glutathione reductase. In the latter organism superoxide dismutase was also induced in cells grown in the presence of selenite, indicating that superoxide anions (O2-) were produced. These observations led us to investigate the abiotic (chemical) reduction of selenite by glutathione and to compare the features of this reaction with those of the reaction mediated by R. rubrum and E. coli. Our findings imply that selenite was first reduced to selenodiglutathione, which reached its maximum concentration within the 1st min of the reaction. Formation of selenodiglutathione was paralleled by a rapid reduction of cytochrome c, a known oxidant for superoxide anions. Cytochrome c reduction was inhibited by superoxide dismutase, indicating that O2- was the source of electrons for the reduction. These results demonstrated that superoxide was produced in the abiotic reduction of selenite with glutathione, thus lending support to the hypothesis that glutathione may be involved in the reaction mediated by R. rubrum and E. coli. The second phase of the reaction, which led to the formation of elemental selenium (Se(o)), developed more slowly. Se(o) precipitation reached a maximum within 2 h after the beginning of the reaction. Secondary reactions leading to the degradation of the superoxide significantly decreased the yield of Se(o) in the abiotic reaction compared with that of the bacterially mediated selenite reduction. Abiotically formed selenium particles showed the same characteristic orange-red color, spherical structure, and size as particles produced by R. rubrum, again providing support for the hypothesis that glutathione is involved in the reduction of selenite to elemental selenium in this organism.  相似文献   
6.
Rhodobacter sphaeroides grew in the presence of up to 43 μM chromate and reduced hexavalent chromium to the trivalent form under both aerobic and anaerobic conditions. Reduced chromium remained in the external medium. Reductase activity was present in cells of R. sphaeroides independent of whether chromate was present or not in the growth medium. The reducing activity was found in the cytoplasmic cell fraction and was dependent on NADH. The chromate-reducing enzyme was purified by anion exchange, hydroxyapatite and hydrophobic interaction chromatography, and gel filtration. The molecular weight of the enzyme was 42 kDa as determined by gel filtration. The optimum of the reaction is at pH 7.0 and 30°C. The enzyme activity showed a hyperbolic dependence on the concentrations of both substrates, NADH and chromate, with a maximum velocity at 0.15 mM NADH. A K m of 15±1.3 μM CrO4 2− and a V max of 420±50 μmol min−1 mg protein−1 was determined for the enzyme isolated from anaerobically grown cells and 29±6.4 μM CrO4 2− and 100±9.6 μmol CrO4 2− min−1 mg protein−1 for the one from aerobically grown ones. Journal of Industrial Microbiology & Biotechnology (2000) 25, 198–203. Received 05 January 2000/ Accepted in revised form 27 May 2000  相似文献   
7.
The effect of selenite on growth kinetics, the ability of cultures to reduce selenite, and the mechanism of detoxification of selenium were investigated by using Rhodospirillum rubrum. Anoxic photosynthetic cultures were able to completely reduce as much as 1.5 mM selenite, whereas in aerobic cultures a 0.5 mM selenite concentration was only reduced to about 0.375 mM. The presence of selenite in the culture medium strongly affected cell division. In the presence of a selenite concentration of 1.5 mM cultures reached final cell densities that were only about 15% of the control final cell density. The cell density remained nearly constant during the stationary phase for all of the selenite concentrations tested, showing that the cells were not severely damaged by the presence of selenite or elemental selenium. Particles containing elemental selenium were observed in the cytoplasm, which led to an increase in the buoyant density of the cells. Interestingly, the change in the buoyant density was reversed after selenite reduction was complete; the buoyant density of the cells returned to the buoyant density of the control cells. This demonstrated that R. rubrum expels elemental selenium across the plasma membrane and the cell wall. Accordingly, electron-dense particles were more numerous in the cells during the reduction phase than after the reduction phase.  相似文献   
8.
1. From the liver of the teleost fish Genypterus maculatus, a partially purified preparation of arginase was obtained and characterized. 2. The Km value for arginine was found to be 9.1 mM at pH 7.5 and 11.5 mM at the optimum pH of 9.5. At both pH values, competitive inhibition was caused by ornithine and lysine, whereas proline, leucine, valine and isoleucine caused a non-competitive inhibitory effect. Branched chain amino acids were more inhibitory than proline. 3. The enzyme was found localized in the mitochondrial matrix of the liver of Genypterus maculatus. It is suggested that this localization would be of importance in the use of arginine as an energy source.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号