首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C. glabrata isolates, real-time PCRs were performed to evaluate the alternations in the regulation of the genes involved in drug efflux including CgCDR1, CgCDR2, CgSNQ2, and CgERG11. Gain-of-function (GOF) mutations in CgPDR1 alleles were determined by DNA sequencing. Cross-resistance to fluconazole, itraconazole, and voriconazole was observed in 2.5 % of the isolates. In the present study, six amino acid substitutions were identified in CgPdr1, among which W297R, T588A, and F575L were previously reported, whereas D243N, H576Y, and P915R are novel. CgCDR1 overexpression was observed in 57.1 % of resistant isolates. However, CgCDR2 was not co-expressed with CgCDR1. CgSNQ2 was upregulated in 71.4 % of the cases. CgERG11 overexpression does not seem to be associated with azole resistance, except for isolates that exhibited azole cross-resistance. The pattern of efflux pump gene upregulation was associated with GOF mutations observed in CgPDR1. These results showed that drug efflux mediated by adenosine-5-triphosphate (ATP)-binding cassette transporters, especially CgSNQ2 and CgCDR1, is the predominant mechanism of fluconazole resistance in Iranian isolates of C. glabrata. Since some novel GOF mutations were found here, this study also calls for research aimed at investigating other new GOF mutations to reveal the comprehensive understanding about efflux-mediated resistance to azole antifungal agents.  相似文献   
3.
Onychomycosis is a common nail problem, accounting for up to half of all nail diseases. Several nail disorders may mimic the onychomycosis clinically. Therefore, a sensitive, quick, and inexpensive test is essential for screening nail specimens for the administration of the proper drug. The aim of this study was to compare 4 different diagnostic methods in the evaluation of onychomycosis and to determine their sensitivity, specificity, positive predictive value, and negative predictive value. In a cross-sectional study, nail specimens were collected from 101 patients suspected to have onychomycosis during a 14-month period. The nail specimens were examined using potassium hydroxide (KOH) 20 %, KOH-treated nail clipping stained with periodic acid-Schiff (KONCPA), and calcofluor white (CFW) stain, and grew a fungal culture. The culture was chosen as the gold standard for statistical analysis using the McNemar and chi-square tests. Out of 101 patients, 100 (99 %) patients had at least 1 of the 4 diagnostic methods positive for the presence of organisms. The positive rates for the fungal culture, KOH preparation, CFW, and KONCPA were 74.2, 85.1, 91.09, and 99.01 %, respectively. The sensitivity and negative predictive value of KONCPA was 100 %. KONCPA was the most sensitive among the tests and was also superior to other methods in its negative predictive value. KONCPA was easy to perform, rapid, and gave significantly higher rates of detection of onychomycosis compared to the standard methods of KOH preparation and fungal culture. Therefore, KONCPA should be the single method of choice for the evaluation of onychomycosis.  相似文献   
4.
5.

Background:

Candida albicans (C. albicans) is a major cause of candidaemia in people with impaired immunity. Blood culture is a “gold standard” for candidaemia detection but is time-consuming and relatively insensitive. We established a real-time PCR assay for C. albicans detection in blood by LightCycler PCR and melting curve analysis.

Methods:

Five milliliter blood samples from healthy volunteers were spiked with 100-106 C. albicans cells to determine the detection limit of our method. DNA was extracted from whole blood using glass beads and the QIAamp DNA Blood Mini Kit (Qiagen, Hilden Germany). DNA from C. albicans isolates were amplified with primers and inserted into Escherichia coli (E. coli) DH5α.1 cells with the TA cloning vector (Invitrogen). The plasmid was used for standardization and optimization. A quantitative PCR assay with the LightCycler amplification and detection system based on fluorescence resonance energy transfer (FRET) with two different specific probes was established. To assess the precision and reproducibility of real-time PCR the intra-assay precision was determined in six consecutive assays.

Results:

No cross-reactivity of the hybridization probes with the DNA of non-C. albicans species or human genomic DNA was observed, which confirmed its 100% specificity. The minimum limit detected was one C. albicans cell or 100 CFU/ml (10 fg) per PCR reaction. The real-time PCR efficiency rate for Candida was high (E = 1.95). Melting curve analysis of C. albicans showed a specific melting peak temperature of 65.76 °C.

Conclusion:

The real-time PCR assay we developed is highly specific and sufficiently sensitive to detect the fungal load for early diagnosis of invasive candidiasis. Key Words: Invasive candidiasis, Real-time PCR, Candida albicans  相似文献   
6.
Mycopathologia - Fungal otitis externa, an infection of the external auditory canal caused by molds and yeasts, accounts for approximately 10–20% of ear canal infections accompanying high...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号